MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arch Structured version   Unicode version

Theorem arch 10219
Description: Archimedean property of real numbers. For any real number, there is an integer greater than it. Theorem I.29 of [Apostol] p. 26. (Contributed by NM, 21-Jan-1997.)
Assertion
Ref Expression
arch  |-  ( A  e.  RR  ->  E. n  e.  NN  A  <  n
)
Distinct variable group:    A, n

Proof of Theorem arch
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 breq1 4216 . . 3  |-  ( y  =  A  ->  (
y  <  n  <->  A  <  n ) )
21rexbidv 2727 . 2  |-  ( y  =  A  ->  ( E. n  e.  NN  y  <  n  <->  E. n  e.  NN  A  <  n
) )
3 nnunb 10218 . . . 4  |-  -.  E. y  e.  RR  A. n  e.  NN  ( n  < 
y  \/  n  =  y )
4 ralnex 2716 . . . 4  |-  ( A. y  e.  RR  -.  A. n  e.  NN  (
n  <  y  \/  n  =  y )  <->  -. 
E. y  e.  RR  A. n  e.  NN  (
n  <  y  \/  n  =  y )
)
53, 4mpbir 202 . . 3  |-  A. y  e.  RR  -.  A. n  e.  NN  ( n  < 
y  \/  n  =  y )
6 rexnal 2717 . . . . 5  |-  ( E. n  e.  NN  -.  ( n  <  y  \/  n  =  y )  <->  -.  A. n  e.  NN  ( n  <  y  \/  n  =  y ) )
7 nnre 10008 . . . . . . . . 9  |-  ( n  e.  NN  ->  n  e.  RR )
8 axlttri 9148 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  n  e.  RR )  ->  ( y  <  n  <->  -.  ( y  =  n  \/  n  <  y
) ) )
97, 8sylan2 462 . . . . . . . 8  |-  ( ( y  e.  RR  /\  n  e.  NN )  ->  ( y  <  n  <->  -.  ( y  =  n  \/  n  <  y
) ) )
10 equcom 1693 . . . . . . . . . . 11  |-  ( y  =  n  <->  n  =  y )
1110orbi1i 508 . . . . . . . . . 10  |-  ( ( y  =  n  \/  n  <  y )  <-> 
( n  =  y  \/  n  <  y
) )
12 orcom 378 . . . . . . . . . 10  |-  ( ( n  =  y  \/  n  <  y )  <-> 
( n  <  y  \/  n  =  y
) )
1311, 12bitri 242 . . . . . . . . 9  |-  ( ( y  =  n  \/  n  <  y )  <-> 
( n  <  y  \/  n  =  y
) )
1413notbii 289 . . . . . . . 8  |-  ( -.  ( y  =  n  \/  n  <  y
)  <->  -.  ( n  <  y  \/  n  =  y ) )
159, 14syl6bb 254 . . . . . . 7  |-  ( ( y  e.  RR  /\  n  e.  NN )  ->  ( y  <  n  <->  -.  ( n  <  y  \/  n  =  y
) ) )
1615biimprd 216 . . . . . 6  |-  ( ( y  e.  RR  /\  n  e.  NN )  ->  ( -.  ( n  <  y  \/  n  =  y )  -> 
y  <  n )
)
1716reximdva 2819 . . . . 5  |-  ( y  e.  RR  ->  ( E. n  e.  NN  -.  ( n  <  y  \/  n  =  y
)  ->  E. n  e.  NN  y  <  n
) )
186, 17syl5bir 211 . . . 4  |-  ( y  e.  RR  ->  ( -.  A. n  e.  NN  ( n  <  y  \/  n  =  y )  ->  E. n  e.  NN  y  <  n ) )
1918ralimia 2780 . . 3  |-  ( A. y  e.  RR  -.  A. n  e.  NN  (
n  <  y  \/  n  =  y )  ->  A. y  e.  RR  E. n  e.  NN  y  <  n )
205, 19ax-mp 8 . 2  |-  A. y  e.  RR  E. n  e.  NN  y  <  n
212, 20vtoclri 3027 1  |-  ( A  e.  RR  ->  E. n  e.  NN  A  <  n
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2706   E.wrex 2707   class class class wbr 4213   RRcr 8990    < clt 9121   NNcn 10001
This theorem is referenced by:  nnrecl  10220  bndndx  10221  btwnz  10373  uzwo3  10570  zmin  10571  rpnnen1lem5  10605  harmonic  12639  alzdvds  12900  ovolicc2lem4  19417  volsup2  19498  ismbf3d  19547  mbfi1fseqlem6  19613  itg2seq  19635  itg2cnlem1  19654  ply1divex  20060  plydivex  20215  ubthlem1  22373  lnconi  23537  esumcst  24456  lgamucov  24823  lgamcvg2  24840  hbtlem5  27310  rfcnnnub  27684  stoweidlem14  27740  stoweidlem60  27786
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-resscn 9048  ax-1cn 9049  ax-icn 9050  ax-addcl 9051  ax-addrcl 9052  ax-mulcl 9053  ax-mulrcl 9054  ax-mulcom 9055  ax-addass 9056  ax-mulass 9057  ax-distr 9058  ax-i2m1 9059  ax-1ne0 9060  ax-1rid 9061  ax-rnegex 9062  ax-rrecex 9063  ax-cnre 9064  ax-pre-lttri 9065  ax-pre-lttrn 9066  ax-pre-ltadd 9067  ax-pre-mulgt0 9068  ax-pre-sup 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-riota 6550  df-recs 6634  df-rdg 6669  df-er 6906  df-en 7111  df-dom 7112  df-sdom 7113  df-pnf 9123  df-mnf 9124  df-xr 9125  df-ltxr 9126  df-le 9127  df-sub 9294  df-neg 9295  df-nn 10002
  Copyright terms: Public domain W3C validator