Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  arglem1N Unicode version

Theorem arglem1N 29530
Description: Lemma for Desargues' law. Theorem 13.3 of [Crawley] p. 110, 3rd and 4th lines from bottom. In these lemmas,  P,  Q,  R,  S,  T,  U,  C,  D,  E,  F, and  G represent Crawley's a0, a1, a2, b0, b1, b2, c, z0, z1, z2, and p respectively. (Contributed by NM, 28-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
arglem1.j  |-  .\/  =  ( join `  K )
arglem1.m  |-  ./\  =  ( meet `  K )
arglem1.a  |-  A  =  ( Atoms `  K )
arglem1.f  |-  F  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )
arglem1.g  |-  G  =  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )
Assertion
Ref Expression
arglem1N  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  F  e.  A )

Proof of Theorem arglem1N
StepHypRef Expression
1 arglem1.f . 2  |-  F  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )
2 simpl11 1035 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  K  e.  HL )
3 hllat 28704 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
42, 3syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  K  e.  Lat )
5 simpl12 1036 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  P  e.  A )
6 eqid 2256 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
7 arglem1.a . . . . . . 7  |-  A  =  ( Atoms `  K )
86, 7atbase 28630 . . . . . 6  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
95, 8syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  P  e.  ( Base `  K
) )
10 simpl13 1037 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  Q  e.  A )
116, 7atbase 28630 . . . . . 6  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
1210, 11syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  Q  e.  ( Base `  K
) )
13 simpl21 1038 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  S  e.  A )
146, 7atbase 28630 . . . . . 6  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
1513, 14syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  S  e.  ( Base `  K
) )
16 simpl22 1039 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  T  e.  A )
176, 7atbase 28630 . . . . . 6  |-  ( T  e.  A  ->  T  e.  ( Base `  K
) )
1816, 17syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  T  e.  ( Base `  K
) )
19 arglem1.j . . . . . 6  |-  .\/  =  ( join `  K )
206, 19latj4 14155 . . . . 5  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K ) )  /\  ( S  e.  ( Base `  K )  /\  T  e.  ( Base `  K ) ) )  ->  ( ( P 
.\/  Q )  .\/  ( S  .\/  T ) )  =  ( ( P  .\/  S ) 
.\/  ( Q  .\/  T ) ) )
214, 9, 12, 15, 18, 20syl122anc 1196 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  (
( P  .\/  Q
)  .\/  ( S  .\/  T ) )  =  ( ( P  .\/  S )  .\/  ( Q 
.\/  T ) ) )
22 arglem1.g . . . . . 6  |-  G  =  ( ( P  .\/  S )  ./\  ( Q  .\/  T ) )
23 simpr 449 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  G  e.  A )
2422, 23syl5eqelr 2341 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  (
( P  .\/  S
)  ./\  ( Q  .\/  T ) )  e.  A )
25 simpl31 1041 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  P  =/=  S )
26 eqid 2256 . . . . . . . 8  |-  ( LLines `  K )  =  (
LLines `  K )
2719, 7, 26llni2 28852 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  S  e.  A )  /\  P  =/=  S
)  ->  ( P  .\/  S )  e.  (
LLines `  K ) )
282, 5, 13, 25, 27syl31anc 1190 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  ( P  .\/  S )  e.  ( LLines `  K )
)
29 simpl32 1042 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  Q  =/=  T )
3019, 7, 26llni2 28852 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  Q  e.  A  /\  T  e.  A )  /\  Q  =/=  T
)  ->  ( Q  .\/  T )  e.  (
LLines `  K ) )
312, 10, 16, 29, 30syl31anc 1190 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  ( Q  .\/  T )  e.  ( LLines `  K )
)
32 arglem1.m . . . . . . 7  |-  ./\  =  ( meet `  K )
33 eqid 2256 . . . . . . 7  |-  ( LPlanes `  K )  =  (
LPlanes `  K )
3419, 32, 7, 26, 332llnmj 28900 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  .\/  S )  e.  ( LLines `  K
)  /\  ( Q  .\/  T )  e.  (
LLines `  K ) )  ->  ( ( ( P  .\/  S ) 
./\  ( Q  .\/  T ) )  e.  A  <->  ( ( P  .\/  S
)  .\/  ( Q  .\/  T ) )  e.  ( LPlanes `  K )
) )
352, 28, 31, 34syl3anc 1187 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  (
( ( P  .\/  S )  ./\  ( Q  .\/  T ) )  e.  A  <->  ( ( P 
.\/  S )  .\/  ( Q  .\/  T ) )  e.  ( LPlanes `  K ) ) )
3624, 35mpbid 203 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  (
( P  .\/  S
)  .\/  ( Q  .\/  T ) )  e.  ( LPlanes `  K )
)
3721, 36eqeltrd 2330 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  (
( P  .\/  Q
)  .\/  ( S  .\/  T ) )  e.  ( LPlanes `  K )
)
38 simpl23 1040 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  P  =/=  Q )
3919, 7, 26llni2 28852 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  ( P  .\/  Q )  e.  (
LLines `  K ) )
402, 5, 10, 38, 39syl31anc 1190 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  ( P  .\/  Q )  e.  ( LLines `  K )
)
41 simpl33 1043 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  S  =/=  T )
4219, 7, 26llni2 28852 . . . . 5  |-  ( ( ( K  e.  HL  /\  S  e.  A  /\  T  e.  A )  /\  S  =/=  T
)  ->  ( S  .\/  T )  e.  (
LLines `  K ) )
432, 13, 16, 41, 42syl31anc 1190 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  ( S  .\/  T )  e.  ( LLines `  K )
)
4419, 32, 7, 26, 332llnmj 28900 . . . 4  |-  ( ( K  e.  HL  /\  ( P  .\/  Q )  e.  ( LLines `  K
)  /\  ( S  .\/  T )  e.  (
LLines `  K ) )  ->  ( ( ( P  .\/  Q ) 
./\  ( S  .\/  T ) )  e.  A  <->  ( ( P  .\/  Q
)  .\/  ( S  .\/  T ) )  e.  ( LPlanes `  K )
) )
452, 40, 43, 44syl3anc 1187 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  (
( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  e.  A  <->  ( ( P 
.\/  Q )  .\/  ( S  .\/  T ) )  e.  ( LPlanes `  K ) ) )
4637, 45mpbird 225 . 2  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  e.  A )
471, 46syl5eqel 2340 1  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  P  =/=  Q )  /\  ( P  =/=  S  /\  Q  =/=  T  /\  S  =/=  T
) )  /\  G  e.  A )  ->  F  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   ` cfv 4659  (class class class)co 5778   Basecbs 13096   joincjn 14026   meetcmee 14027   Latclat 14099   Atomscatm 28604   HLchlt 28691   LLinesclln 28831   LPlanesclpl 28832
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4091  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2521  df-rex 2522  df-reu 2523  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-op 3609  df-uni 3788  df-iun 3867  df-br 3984  df-opab 4038  df-mpt 4039  df-id 4267  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-1st 6042  df-2nd 6043  df-iota 6211  df-undef 6250  df-riota 6258  df-poset 14028  df-plt 14040  df-lub 14056  df-glb 14057  df-join 14058  df-meet 14059  df-p0 14093  df-lat 14100  df-clat 14162  df-oposet 28517  df-ol 28519  df-oml 28520  df-covers 28607  df-ats 28608  df-atl 28639  df-cvlat 28663  df-hlat 28692  df-llines 28838  df-lplanes 28839
  Copyright terms: Public domain W3C validator