MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  args Unicode version

Theorem args 5057
Description: Two ways to express the class of unique-valued arguments of 
F, which is the same as the domain of  F whenever  F is a function. The left-hand side of the equality is from Definition 10.2 of [Quine] p. 65. Quine uses the notation "arg  F " for this class (for which we have no separate notation). Observe the resemblance to the alternative definition dffv4 5538 of function value, which is based on the idea in Quine's definition. (Contributed by NM, 8-May-2005.)
Assertion
Ref Expression
args  |-  { x  |  E. y ( F
" { x }
)  =  { y } }  =  {
x  |  E! y  x F y }
Distinct variable groups:    y, F    x, y
Allowed substitution hint:    F( x)

Proof of Theorem args
StepHypRef Expression
1 vex 2804 . . . . . 6  |-  x  e. 
_V
2 imasng 5051 . . . . . 6  |-  ( x  e.  _V  ->  ( F " { x }
)  =  { y  |  x F y } )
31, 2ax-mp 8 . . . . 5  |-  ( F
" { x }
)  =  { y  |  x F y }
43eqeq1i 2303 . . . 4  |-  ( ( F " { x } )  =  {
y }  <->  { y  |  x F y }  =  { y } )
54exbii 1572 . . 3  |-  ( E. y ( F " { x } )  =  { y }  <->  E. y { y  |  x F y }  =  { y } )
6 euabsn 3712 . . 3  |-  ( E! y  x F y  <->  E. y { y  |  x F y }  =  { y } )
75, 6bitr4i 243 . 2  |-  ( E. y ( F " { x } )  =  { y }  <-> 
E! y  x F y )
87abbii 2408 1  |-  { x  |  E. y ( F
" { x }
)  =  { y } }  =  {
x  |  E! y  x F y }
Colors of variables: wff set class
Syntax hints:   E.wex 1531    = wceq 1632    e. wcel 1696   E!weu 2156   {cab 2282   _Vcvv 2801   {csn 3653   class class class wbr 4039   "cima 4708
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-xp 4711  df-cnv 4713  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718
  Copyright terms: Public domain W3C validator