MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  args Unicode version

Theorem args 5015
Description: Two ways to express the class of unique-valued arguments of 
F, which is the same as the domain of  F whenever  F is a function. The left-hand side of the equality is from Definition 10.2 of [Quine] p. 65. Quine uses the notation "arg  F " for this class (for which we have no separate notation). Observe the resemblance to our df-fv 4675, which was based on the idea in Quine's definition. (Contributed by NM, 8-May-2005.)
Assertion
Ref Expression
args  |-  { x  |  E. y ( F
" { x }
)  =  { y } }  =  {
x  |  E! y  x F y }
Distinct variable groups:    y, F    x, y
Allowed substitution hint:    F( x)

Proof of Theorem args
StepHypRef Expression
1 vex 2760 . . . . . 6  |-  x  e. 
_V
2 imasng 5009 . . . . . 6  |-  ( x  e.  _V  ->  ( F " { x }
)  =  { y  |  x F y } )
31, 2ax-mp 10 . . . . 5  |-  ( F
" { x }
)  =  { y  |  x F y }
43eqeq1i 2263 . . . 4  |-  ( ( F " { x } )  =  {
y }  <->  { y  |  x F y }  =  { y } )
54exbii 1580 . . 3  |-  ( E. y ( F " { x } )  =  { y }  <->  E. y { y  |  x F y }  =  { y } )
6 euabsn 3659 . . 3  |-  ( E! y  x F y  <->  E. y { y  |  x F y }  =  { y } )
75, 6bitr4i 245 . 2  |-  ( E. y ( F " { x } )  =  { y }  <-> 
E! y  x F y )
87abbii 2368 1  |-  { x  |  E. y ( F
" { x }
)  =  { y } }  =  {
x  |  E! y  x F y }
Colors of variables: wff set class
Syntax hints:   E.wex 1537    = wceq 1619    e. wcel 1621   E!weu 2117   {cab 2242   _Vcvv 2757   {csn 3600   class class class wbr 3983   "cima 4650
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pr 4172
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-rab 2525  df-v 2759  df-sbc 2953  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-sn 3606  df-pr 3607  df-op 3609  df-br 3984  df-opab 4038  df-xp 4661  df-cnv 4663  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668
  Copyright terms: Public domain W3C validator