MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  args Unicode version

Theorem args 5223
Description: Two ways to express the class of unique-valued arguments of 
F, which is the same as the domain of  F whenever  F is a function. The left-hand side of the equality is from Definition 10.2 of [Quine] p. 65. Quine uses the notation "arg  F " for this class (for which we have no separate notation). Observe the resemblance to the alternative definition dffv4 5716 of function value, which is based on the idea in Quine's definition. (Contributed by NM, 8-May-2005.)
Assertion
Ref Expression
args  |-  { x  |  E. y ( F
" { x }
)  =  { y } }  =  {
x  |  E! y  x F y }
Distinct variable groups:    y, F    x, y
Allowed substitution hint:    F( x)

Proof of Theorem args
StepHypRef Expression
1 vex 2951 . . . . . 6  |-  x  e. 
_V
2 imasng 5217 . . . . . 6  |-  ( x  e.  _V  ->  ( F " { x }
)  =  { y  |  x F y } )
31, 2ax-mp 8 . . . . 5  |-  ( F
" { x }
)  =  { y  |  x F y }
43eqeq1i 2442 . . . 4  |-  ( ( F " { x } )  =  {
y }  <->  { y  |  x F y }  =  { y } )
54exbii 1592 . . 3  |-  ( E. y ( F " { x } )  =  { y }  <->  E. y { y  |  x F y }  =  { y } )
6 euabsn 3868 . . 3  |-  ( E! y  x F y  <->  E. y { y  |  x F y }  =  { y } )
75, 6bitr4i 244 . 2  |-  ( E. y ( F " { x } )  =  { y }  <-> 
E! y  x F y )
87abbii 2547 1  |-  { x  |  E. y ( F
" { x }
)  =  { y } }  =  {
x  |  E! y  x F y }
Colors of variables: wff set class
Syntax hints:   E.wex 1550    = wceq 1652    e. wcel 1725   E!weu 2280   {cab 2421   _Vcvv 2948   {csn 3806   class class class wbr 4204   "cima 4872
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-xp 4875  df-cnv 4877  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882
  Copyright terms: Public domain W3C validator