MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atanlogaddlem Structured version   Unicode version

Theorem atanlogaddlem 20755
Description: Lemma for atanlogadd 20756. (Contributed by Mario Carneiro, 3-Apr-2015.)
Assertion
Ref Expression
atanlogaddlem  |-  ( ( A  e.  dom arctan  /\  0  <_  ( Re `  A
) )  ->  (
( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) )  e. 
ran  log )

Proof of Theorem atanlogaddlem
StepHypRef Expression
1 0re 9093 . . . 4  |-  0  e.  RR
2 atandm2 20719 . . . . . 6  |-  ( A  e.  dom arctan  <->  ( A  e.  CC  /\  ( 1  -  ( _i  x.  A ) )  =/=  0  /\  ( 1  +  ( _i  x.  A ) )  =/=  0 ) )
32simp1bi 973 . . . . 5  |-  ( A  e.  dom arctan  ->  A  e.  CC )
43recld 12001 . . . 4  |-  ( A  e.  dom arctan  ->  ( Re
`  A )  e.  RR )
5 leloe 9163 . . . 4  |-  ( ( 0  e.  RR  /\  ( Re `  A )  e.  RR )  -> 
( 0  <_  (
Re `  A )  <->  ( 0  <  ( Re
`  A )  \/  0  =  ( Re
`  A ) ) ) )
61, 4, 5sylancr 646 . . 3  |-  ( A  e.  dom arctan  ->  ( 0  <_  ( Re `  A )  <->  ( 0  <  ( Re `  A )  \/  0  =  ( Re `  A ) ) ) )
76biimpa 472 . 2  |-  ( ( A  e.  dom arctan  /\  0  <_  ( Re `  A
) )  ->  (
0  <  ( Re `  A )  \/  0  =  ( Re `  A ) ) )
8 ax-1cn 9050 . . . . . . . 8  |-  1  e.  CC
9 ax-icn 9051 . . . . . . . . 9  |-  _i  e.  CC
10 mulcl 9076 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
119, 3, 10sylancr 646 . . . . . . . 8  |-  ( A  e.  dom arctan  ->  ( _i  x.  A )  e.  CC )
12 addcl 9074 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 1  +  ( _i  x.  A
) )  e.  CC )
138, 11, 12sylancr 646 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( 1  +  ( _i  x.  A ) )  e.  CC )
142simp3bi 975 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( 1  +  ( _i  x.  A ) )  =/=  0 )
1513, 14logcld 20470 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( log `  ( 1  +  ( _i  x.  A ) ) )  e.  CC )
16 subcl 9307 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 1  -  ( _i  x.  A
) )  e.  CC )
178, 11, 16sylancr 646 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( 1  -  ( _i  x.  A ) )  e.  CC )
182simp2bi 974 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( 1  -  ( _i  x.  A ) )  =/=  0 )
1917, 18logcld 20470 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( log `  ( 1  -  (
_i  x.  A )
) )  e.  CC )
2015, 19addcld 9109 . . . . 5  |-  ( A  e.  dom arctan  ->  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) )  e.  CC )
2120adantr 453 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) )  e.  CC )
22 pire 20374 . . . . . . . 8  |-  pi  e.  RR
2322renegcli 9364 . . . . . . 7  |-  -u pi  e.  RR
2423a1i 11 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u pi  e.  RR )
2519adantr 453 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( log `  ( 1  -  ( _i  x.  A
) ) )  e.  CC )
2625imcld 12002 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( 1  -  (
_i  x.  A )
) ) )  e.  RR )
2715adantr 453 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( log `  ( 1  +  ( _i  x.  A
) ) )  e.  CC )
2827imcld 12002 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  e.  RR )
2928, 26readdcld 9117 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  +  ( Im `  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) )  e.  RR )
3017adantr 453 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
1  -  ( _i  x.  A ) )  e.  CC )
31 im1 11962 . . . . . . . . . . . . 13  |-  ( Im
`  1 )  =  0
3231oveq1i 6093 . . . . . . . . . . . 12  |-  ( ( Im `  1 )  -  ( Im `  ( _i  x.  A
) ) )  =  ( 0  -  (
Im `  ( _i  x.  A ) ) )
33 df-neg 9296 . . . . . . . . . . . 12  |-  -u (
Im `  ( _i  x.  A ) )  =  ( 0  -  (
Im `  ( _i  x.  A ) ) )
3432, 33eqtr4i 2461 . . . . . . . . . . 11  |-  ( ( Im `  1 )  -  ( Im `  ( _i  x.  A
) ) )  = 
-u ( Im `  ( _i  x.  A
) )
3511adantr 453 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
_i  x.  A )  e.  CC )
36 imsub 11942 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( Im `  ( 1  -  (
_i  x.  A )
) )  =  ( ( Im `  1
)  -  ( Im
`  ( _i  x.  A ) ) ) )
378, 35, 36sylancr 646 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( 1  -  ( _i  x.  A ) ) )  =  ( ( Im
`  1 )  -  ( Im `  ( _i  x.  A ) ) ) )
383adantr 453 . . . . . . . . . . . . 13  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  A  e.  CC )
39 reim 11916 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  (
Re `  A )  =  ( Im `  ( _i  x.  A
) ) )
4038, 39syl 16 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Re `  A )  =  ( Im `  ( _i  x.  A
) ) )
4140negeqd 9302 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u (
Re `  A )  =  -u ( Im `  ( _i  x.  A
) ) )
4234, 37, 413eqtr4a 2496 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( 1  -  ( _i  x.  A ) ) )  =  -u ( Re `  A ) )
434lt0neg2d 9599 . . . . . . . . . . 11  |-  ( A  e.  dom arctan  ->  ( 0  <  ( Re `  A )  <->  -u ( Re
`  A )  <  0 ) )
4443biimpa 472 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u (
Re `  A )  <  0 )
4542, 44eqbrtrd 4234 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( 1  -  ( _i  x.  A ) ) )  <  0 )
46 argimlt0 20510 . . . . . . . . 9  |-  ( ( ( 1  -  (
_i  x.  A )
)  e.  CC  /\  ( Im `  ( 1  -  ( _i  x.  A ) ) )  <  0 )  -> 
( Im `  ( log `  ( 1  -  ( _i  x.  A
) ) ) )  e.  ( -u pi (,) 0 ) )
4730, 45, 46syl2anc 644 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( 1  -  (
_i  x.  A )
) ) )  e.  ( -u pi (,) 0 ) )
48 eliooord 10972 . . . . . . . 8  |-  ( ( Im `  ( log `  ( 1  -  (
_i  x.  A )
) ) )  e.  ( -u pi (,) 0 )  ->  ( -u pi  <  ( Im
`  ( log `  (
1  -  ( _i  x.  A ) ) ) )  /\  (
Im `  ( log `  ( 1  -  (
_i  x.  A )
) ) )  <  0 ) )
4947, 48syl 16 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  ( -u pi  <  ( Im
`  ( log `  (
1  -  ( _i  x.  A ) ) ) )  /\  (
Im `  ( log `  ( 1  -  (
_i  x.  A )
) ) )  <  0 ) )
5049simpld 447 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u pi  <  ( Im `  ( log `  ( 1  -  ( _i  x.  A
) ) ) ) )
5113adantr 453 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
1  +  ( _i  x.  A ) )  e.  CC )
52 simpr 449 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  0  <  ( Re `  A
) )
53 imadd 11941 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( Im `  ( 1  +  ( _i  x.  A ) ) )  =  ( ( Im `  1
)  +  ( Im
`  ( _i  x.  A ) ) ) )
548, 35, 53sylancr 646 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( 1  +  ( _i  x.  A ) ) )  =  ( ( Im
`  1 )  +  ( Im `  (
_i  x.  A )
) ) )
5540oveq2d 6099 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  1
)  +  ( Re
`  A ) )  =  ( ( Im
`  1 )  +  ( Im `  (
_i  x.  A )
) ) )
5631oveq1i 6093 . . . . . . . . . . . . 13  |-  ( ( Im `  1 )  +  ( Re `  A ) )  =  ( 0  +  ( Re `  A ) )
5738recld 12001 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Re `  A )  e.  RR )
5857recnd 9116 . . . . . . . . . . . . . 14  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Re `  A )  e.  CC )
5958addid2d 9269 . . . . . . . . . . . . 13  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
0  +  ( Re
`  A ) )  =  ( Re `  A ) )
6056, 59syl5eq 2482 . . . . . . . . . . . 12  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  1
)  +  ( Re
`  A ) )  =  ( Re `  A ) )
6154, 55, 603eqtr2d 2476 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( 1  +  ( _i  x.  A ) ) )  =  ( Re `  A ) )
6252, 61breqtrrd 4240 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  0  <  ( Im `  (
1  +  ( _i  x.  A ) ) ) )
63 argimgt0 20509 . . . . . . . . . 10  |-  ( ( ( 1  +  ( _i  x.  A ) )  e.  CC  /\  0  <  ( Im `  ( 1  +  ( _i  x.  A ) ) ) )  -> 
( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  e.  ( 0 (,) pi ) )
6451, 62, 63syl2anc 644 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  e.  ( 0 (,) pi ) )
65 eliooord 10972 . . . . . . . . 9  |-  ( ( Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  e.  ( 0 (,) pi )  ->  ( 0  < 
( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  /\  ( Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  <  pi ) )
6664, 65syl 16 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
0  <  ( Im `  ( log `  (
1  +  ( _i  x.  A ) ) ) )  /\  (
Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  < 
pi ) )
6766simpld 447 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  0  <  ( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) ) )
6828, 26ltaddpos2d 9613 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
0  <  ( Im `  ( log `  (
1  +  ( _i  x.  A ) ) ) )  <->  ( Im `  ( log `  (
1  -  ( _i  x.  A ) ) ) )  <  (
( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  +  ( Im `  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) ) ) )
6967, 68mpbid 203 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( 1  -  (
_i  x.  A )
) ) )  < 
( ( Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  +  ( Im
`  ( log `  (
1  -  ( _i  x.  A ) ) ) ) ) )
7024, 26, 29, 50, 69lttrd 9233 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u pi  <  ( ( Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  +  ( Im
`  ( log `  (
1  -  ( _i  x.  A ) ) ) ) ) )
7127, 25imaddd 12022 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( ( log `  ( 1  +  ( _i  x.  A
) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) ) )  =  ( ( Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  +  ( Im
`  ( log `  (
1  -  ( _i  x.  A ) ) ) ) ) )
7270, 71breqtrrd 4240 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  -u pi  <  ( Im `  (
( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) ) ) )
7322a1i 11 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  pi  e.  RR )
741a1i 11 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  0  e.  RR )
7549simprd 451 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( 1  -  (
_i  x.  A )
) ) )  <  0 )
7626, 74, 28, 75ltadd2dd 9231 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  +  ( Im `  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) )  <  (
( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  +  0 ) )
7728recnd 9116 . . . . . . . . 9  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  e.  CC )
7877addid1d 9268 . . . . . . . 8  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  +  0 )  =  ( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) ) )
7976, 78breqtrd 4238 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  +  ( Im `  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) )  <  (
Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )
8066simprd 451 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  < 
pi )
8129, 28, 73, 79, 80lttrd 9233 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  +  ( Im `  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) )  <  pi )
8229, 73, 81ltled 9223 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( Im `  ( log `  ( 1  +  ( _i  x.  A
) ) ) )  +  ( Im `  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) )  <_  pi )
8371, 82eqbrtrd 4234 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
Im `  ( ( log `  ( 1  +  ( _i  x.  A
) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) ) )  <_  pi )
84 ellogrn 20459 . . . 4  |-  ( ( ( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) )  e. 
ran  log  <->  ( ( ( log `  ( 1  +  ( _i  x.  A ) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) )  e.  CC  /\  -u pi  <  ( Im
`  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  ( _i  x.  A ) ) ) ) )  /\  (
Im `  ( ( log `  ( 1  +  ( _i  x.  A
) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) ) )  <_  pi ) )
8521, 72, 83, 84syl3anbrc 1139 . . 3  |-  ( ( A  e.  dom arctan  /\  0  <  ( Re `  A
) )  ->  (
( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) )  e. 
ran  log )
861a1i 11 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  -> 
0  e.  RR )
8711adantr 453 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  -> 
( _i  x.  A
)  e.  CC )
88 simpr 449 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  -> 
0  =  ( Re
`  A ) )
893adantr 453 . . . . . . 7  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  ->  A  e.  CC )
9089, 39syl 16 . . . . . 6  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  -> 
( Re `  A
)  =  ( Im
`  ( _i  x.  A ) ) )
9188, 90eqtr2d 2471 . . . . 5  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  -> 
( Im `  (
_i  x.  A )
)  =  0 )
9287, 91reim0bd 12007 . . . 4  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  -> 
( _i  x.  A
)  e.  RR )
9315, 19addcomd 9270 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) )  =  ( ( log `  (
1  -  ( _i  x.  A ) ) )  +  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )
9493ad2antrr 708 . . . . 5  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  ( ( log `  ( 1  +  ( _i  x.  A
) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) )  =  ( ( log `  (
1  -  ( _i  x.  A ) ) )  +  ( log `  ( 1  +  ( _i  x.  A ) ) ) ) )
95 logrncl 20467 . . . . . . . 8  |-  ( ( ( 1  -  (
_i  x.  A )
)  e.  CC  /\  ( 1  -  (
_i  x.  A )
)  =/=  0 )  ->  ( log `  (
1  -  ( _i  x.  A ) ) )  e.  ran  log )
9617, 18, 95syl2anc 644 . . . . . . 7  |-  ( A  e.  dom arctan  ->  ( log `  ( 1  -  (
_i  x.  A )
) )  e.  ran  log )
9796ad2antrr 708 . . . . . 6  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  ( log `  ( 1  -  (
_i  x.  A )
) )  e.  ran  log )
98 1re 9092 . . . . . . . . 9  |-  1  e.  RR
9992adantr 453 . . . . . . . . 9  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  ( _i  x.  A )  e.  RR )
100 readdcl 9075 . . . . . . . . 9  |-  ( ( 1  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  ( 1  +  ( _i  x.  A
) )  e.  RR )
10198, 99, 100sylancr 646 . . . . . . . 8  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  ( 1  +  ( _i  x.  A ) )  e.  RR )
1021a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  0  e.  RR )
10398a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  1  e.  RR )
104 0lt1 9552 . . . . . . . . . 10  |-  0  <  1
105104a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  0  <  1 )
106 addge01 9540 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  ( 0  <_ 
( _i  x.  A
)  <->  1  <_  (
1  +  ( _i  x.  A ) ) ) )
10798, 92, 106sylancr 646 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  -> 
( 0  <_  (
_i  x.  A )  <->  1  <_  ( 1  +  ( _i  x.  A
) ) ) )
108107biimpa 472 . . . . . . . . 9  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  1  <_  ( 1  +  ( _i  x.  A ) ) )
109102, 103, 101, 105, 108ltletrd 9232 . . . . . . . 8  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  0  <  ( 1  +  ( _i  x.  A ) ) )
110101, 109elrpd 10648 . . . . . . 7  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  ( 1  +  ( _i  x.  A ) )  e.  RR+ )
111110relogcld 20520 . . . . . 6  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  ( log `  ( 1  +  ( _i  x.  A ) ) )  e.  RR )
112 logrnaddcl 20474 . . . . . 6  |-  ( ( ( log `  (
1  -  ( _i  x.  A ) ) )  e.  ran  log  /\  ( log `  (
1  +  ( _i  x.  A ) ) )  e.  RR )  ->  ( ( log `  ( 1  -  (
_i  x.  A )
) )  +  ( log `  ( 1  +  ( _i  x.  A ) ) ) )  e.  ran  log )
11397, 111, 112syl2anc 644 . . . . 5  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  ( ( log `  ( 1  -  ( _i  x.  A
) ) )  +  ( log `  (
1  +  ( _i  x.  A ) ) ) )  e.  ran  log )
11494, 113eqeltrd 2512 . . . 4  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  0  <_  (
_i  x.  A )
)  ->  ( ( log `  ( 1  +  ( _i  x.  A
) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) )  e.  ran  log )
115 logrncl 20467 . . . . . . 7  |-  ( ( ( 1  +  ( _i  x.  A ) )  e.  CC  /\  ( 1  +  ( _i  x.  A ) )  =/=  0 )  ->  ( log `  (
1  +  ( _i  x.  A ) ) )  e.  ran  log )
11613, 14, 115syl2anc 644 . . . . . 6  |-  ( A  e.  dom arctan  ->  ( log `  ( 1  +  ( _i  x.  A ) ) )  e.  ran  log )
117116ad2antrr 708 . . . . 5  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  ( log `  ( 1  +  ( _i  x.  A ) ) )  e.  ran  log )
11892adantr 453 . . . . . . . 8  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  ( _i  x.  A )  e.  RR )
119 resubcl 9367 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  ( 1  -  ( _i  x.  A
) )  e.  RR )
12098, 118, 119sylancr 646 . . . . . . 7  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  ( 1  -  ( _i  x.  A ) )  e.  RR )
1211a1i 11 . . . . . . . 8  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  0  e.  RR )
12298a1i 11 . . . . . . . 8  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  1  e.  RR )
123104a1i 11 . . . . . . . 8  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  0  <  1 )
1248subid1i 9374 . . . . . . . . 9  |-  ( 1  -  0 )  =  1
12598a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  -> 
1  e.  RR )
12692, 86, 125lesub2d 9636 . . . . . . . . . 10  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  -> 
( ( _i  x.  A )  <_  0  <->  ( 1  -  0 )  <_  ( 1  -  ( _i  x.  A
) ) ) )
127126biimpa 472 . . . . . . . . 9  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  ( 1  -  0 )  <_ 
( 1  -  (
_i  x.  A )
) )
128124, 127syl5eqbrr 4248 . . . . . . . 8  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  1  <_  ( 1  -  ( _i  x.  A ) ) )
129121, 122, 120, 123, 128ltletrd 9232 . . . . . . 7  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  0  <  ( 1  -  ( _i  x.  A ) ) )
130120, 129elrpd 10648 . . . . . 6  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  ( 1  -  ( _i  x.  A ) )  e.  RR+ )
131130relogcld 20520 . . . . 5  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  ( log `  ( 1  -  (
_i  x.  A )
) )  e.  RR )
132 logrnaddcl 20474 . . . . 5  |-  ( ( ( log `  (
1  +  ( _i  x.  A ) ) )  e.  ran  log  /\  ( log `  (
1  -  ( _i  x.  A ) ) )  e.  RR )  ->  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  ( _i  x.  A ) ) ) )  e.  ran  log )
133117, 131, 132syl2anc 644 . . . 4  |-  ( ( ( A  e.  dom arctan  /\  0  =  ( Re
`  A ) )  /\  ( _i  x.  A )  <_  0
)  ->  ( ( log `  ( 1  +  ( _i  x.  A
) ) )  +  ( log `  (
1  -  ( _i  x.  A ) ) ) )  e.  ran  log )
13486, 92, 114, 133lecasei 9181 . . 3  |-  ( ( A  e.  dom arctan  /\  0  =  ( Re `  A ) )  -> 
( ( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) )  e. 
ran  log )
13585, 134jaodan 762 . 2  |-  ( ( A  e.  dom arctan  /\  (
0  <  ( Re `  A )  \/  0  =  ( Re `  A ) ) )  ->  ( ( log `  ( 1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  ( _i  x.  A ) ) ) )  e.  ran  log )
1367, 135syldan 458 1  |-  ( ( A  e.  dom arctan  /\  0  <_  ( Re `  A
) )  ->  (
( log `  (
1  +  ( _i  x.  A ) ) )  +  ( log `  ( 1  -  (
_i  x.  A )
) ) )  e. 
ran  log )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601   class class class wbr 4214   dom cdm 4880   ran crn 4881   ` cfv 5456  (class class class)co 6083   CCcc 8990   RRcr 8991   0cc0 8992   1c1 8993   _ici 8994    + caddc 8995    x. cmul 8997    < clt 9122    <_ cle 9123    - cmin 9293   -ucneg 9294   (,)cioo 10918   Recre 11904   Imcim 11905   picpi 12671   logclog 20454  arctancatan 20706
This theorem is referenced by:  atanlogadd  20756
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070  ax-addf 9071  ax-mulf 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-of 6307  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-2o 6727  df-oadd 6730  df-er 6907  df-map 7022  df-pm 7023  df-ixp 7066  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-fi 7418  df-sup 7448  df-oi 7481  df-card 7828  df-cda 8050  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-5 10063  df-6 10064  df-7 10065  df-8 10066  df-9 10067  df-10 10068  df-n0 10224  df-z 10285  df-dec 10385  df-uz 10491  df-q 10577  df-rp 10615  df-xneg 10712  df-xadd 10713  df-xmul 10714  df-ioo 10922  df-ioc 10923  df-ico 10924  df-icc 10925  df-fz 11046  df-fzo 11138  df-fl 11204  df-mod 11253  df-seq 11326  df-exp 11385  df-fac 11569  df-bc 11596  df-hash 11621  df-shft 11884  df-cj 11906  df-re 11907  df-im 11908  df-sqr 12042  df-abs 12043  df-limsup 12267  df-clim 12284  df-rlim 12285  df-sum 12482  df-ef 12672  df-sin 12674  df-cos 12675  df-pi 12677  df-struct 13473  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478  df-plusg 13544  df-mulr 13545  df-starv 13546  df-sca 13547  df-vsca 13548  df-tset 13550  df-ple 13551  df-ds 13553  df-unif 13554  df-hom 13555  df-cco 13556  df-rest 13652  df-topn 13653  df-topgen 13669  df-pt 13670  df-prds 13673  df-xrs 13728  df-0g 13729  df-gsum 13730  df-qtop 13735  df-imas 13736  df-xps 13738  df-mre 13813  df-mrc 13814  df-acs 13816  df-mnd 14692  df-submnd 14741  df-mulg 14817  df-cntz 15118  df-cmn 15416  df-psmet 16696  df-xmet 16697  df-met 16698  df-bl 16699  df-mopn 16700  df-fbas 16701  df-fg 16702  df-cnfld 16706  df-top 16965  df-bases 16967  df-topon 16968  df-topsp 16969  df-cld 17085  df-ntr 17086  df-cls 17087  df-nei 17164  df-lp 17202  df-perf 17203  df-cn 17293  df-cnp 17294  df-haus 17381  df-tx 17596  df-hmeo 17789  df-fil 17880  df-fm 17972  df-flim 17973  df-flf 17974  df-xms 18352  df-ms 18353  df-tms 18354  df-cncf 18910  df-limc 19755  df-dv 19756  df-log 20456  df-atan 20709
  Copyright terms: Public domain W3C validator