HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  atcvat4i Unicode version

Theorem atcvat4i 23888
Description: A condition implying existence of an atom with the properties shown. Lemma 3.2.20 of [PtakPulmannova] p. 68. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.)
Hypothesis
Ref Expression
atcvat3.1  |-  A  e. 
CH
Assertion
Ref Expression
atcvat4i  |-  ( ( B  e. HAtoms  /\  C  e. HAtoms
)  ->  ( ( A  =/=  0H  /\  B  C_  ( A  vH  C
) )  ->  E. x  e. HAtoms  ( x  C_  A  /\  B  C_  ( C  vH  x ) ) ) )
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem atcvat4i
StepHypRef Expression
1 atcvat3.1 . . . . . . . . 9  |-  A  e. 
CH
21hatomici 23850 . . . . . . . 8  |-  ( A  =/=  0H  ->  E. x  e. HAtoms  x  C_  A )
3 atelch 23835 . . . . . . . . . . . . . . 15  |-  ( C  e. HAtoms  ->  C  e.  CH )
4 atelch 23835 . . . . . . . . . . . . . . 15  |-  ( x  e. HAtoms  ->  x  e.  CH )
5 chub1 22997 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  CH  /\  x  e.  CH )  ->  C  C_  ( C  vH  x ) )
63, 4, 5syl2an 464 . . . . . . . . . . . . . 14  |-  ( ( C  e. HAtoms  /\  x  e. HAtoms )  ->  C  C_  ( C  vH  x ) )
7 sseq1 3361 . . . . . . . . . . . . . 14  |-  ( B  =  C  ->  ( B  C_  ( C  vH  x )  <->  C  C_  ( C  vH  x ) ) )
86, 7syl5ibr 213 . . . . . . . . . . . . 13  |-  ( B  =  C  ->  (
( C  e. HAtoms  /\  x  e. HAtoms )  ->  B  C_  ( C  vH  x ) ) )
98exp3a 426 . . . . . . . . . . . 12  |-  ( B  =  C  ->  ( C  e. HAtoms  ->  ( x  e. HAtoms  ->  B  C_  ( C  vH  x ) ) ) )
109impcom 420 . . . . . . . . . . 11  |-  ( ( C  e. HAtoms  /\  B  =  C )  ->  (
x  e. HAtoms  ->  B  C_  ( C  vH  x
) ) )
1110anim2d 549 . . . . . . . . . 10  |-  ( ( C  e. HAtoms  /\  B  =  C )  ->  (
( x  C_  A  /\  x  e. HAtoms )  -> 
( x  C_  A  /\  B  C_  ( C  vH  x ) ) ) )
1211exp3acom23 1381 . . . . . . . . 9  |-  ( ( C  e. HAtoms  /\  B  =  C )  ->  (
x  e. HAtoms  ->  ( x 
C_  A  ->  (
x  C_  A  /\  B  C_  ( C  vH  x ) ) ) ) )
1312reximdvai 2808 . . . . . . . 8  |-  ( ( C  e. HAtoms  /\  B  =  C )  ->  ( E. x  e. HAtoms  x  C_  A  ->  E. x  e. HAtoms  (
x  C_  A  /\  B  C_  ( C  vH  x ) ) ) )
142, 13syl5 30 . . . . . . 7  |-  ( ( C  e. HAtoms  /\  B  =  C )  ->  ( A  =/=  0H  ->  E. x  e. HAtoms  ( x  C_  A  /\  B  C_  ( C  vH  x ) ) ) )
1514ex 424 . . . . . 6  |-  ( C  e. HAtoms  ->  ( B  =  C  ->  ( A  =/=  0H  ->  E. x  e. HAtoms  ( x  C_  A  /\  B  C_  ( C  vH  x ) ) ) ) )
1615a1i 11 . . . . 5  |-  ( B 
C_  ( A  vH  C )  ->  ( C  e. HAtoms  ->  ( B  =  C  ->  ( A  =/=  0H  ->  E. x  e. HAtoms  ( x  C_  A  /\  B  C_  ( C  vH  x ) ) ) ) ) )
1716com4l 80 . . . 4  |-  ( C  e. HAtoms  ->  ( B  =  C  ->  ( A  =/=  0H  ->  ( B  C_  ( A  vH  C
)  ->  E. x  e. HAtoms  ( x  C_  A  /\  B  C_  ( C  vH  x ) ) ) ) ) )
1817imp4a 573 . . 3  |-  ( C  e. HAtoms  ->  ( B  =  C  ->  ( ( A  =/=  0H  /\  B  C_  ( A  vH  C
) )  ->  E. x  e. HAtoms  ( x  C_  A  /\  B  C_  ( C  vH  x ) ) ) ) )
1918adantl 453 . 2  |-  ( ( B  e. HAtoms  /\  C  e. HAtoms
)  ->  ( B  =  C  ->  ( ( A  =/=  0H  /\  B  C_  ( A  vH  C ) )  ->  E. x  e. HAtoms  ( x 
C_  A  /\  B  C_  ( C  vH  x
) ) ) ) )
20 atelch 23835 . . . . . . . 8  |-  ( B  e. HAtoms  ->  B  e.  CH )
21 chlejb2 23003 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  CH  /\  A  e.  CH )  ->  ( C  C_  A  <->  ( A  vH  C )  =  A ) )
221, 21mpan2 653 . . . . . . . . . . . . . 14  |-  ( C  e.  CH  ->  ( C  C_  A  <->  ( A  vH  C )  =  A ) )
2322biimpa 471 . . . . . . . . . . . . 13  |-  ( ( C  e.  CH  /\  C  C_  A )  -> 
( A  vH  C
)  =  A )
2423sseq2d 3368 . . . . . . . . . . . 12  |-  ( ( C  e.  CH  /\  C  C_  A )  -> 
( B  C_  ( A  vH  C )  <->  B  C_  A
) )
2524biimpa 471 . . . . . . . . . . 11  |-  ( ( ( C  e.  CH  /\  C  C_  A )  /\  B  C_  ( A  vH  C ) )  ->  B  C_  A
)
2625expl 602 . . . . . . . . . 10  |-  ( C  e.  CH  ->  (
( C  C_  A  /\  B  C_  ( A  vH  C ) )  ->  B  C_  A
) )
2726adantl 453 . . . . . . . . 9  |-  ( ( B  e.  CH  /\  C  e.  CH )  ->  ( ( C  C_  A  /\  B  C_  ( A  vH  C ) )  ->  B  C_  A
) )
28 chub2 22998 . . . . . . . . 9  |-  ( ( B  e.  CH  /\  C  e.  CH )  ->  B  C_  ( C  vH  B ) )
2927, 28jctird 529 . . . . . . . 8  |-  ( ( B  e.  CH  /\  C  e.  CH )  ->  ( ( C  C_  A  /\  B  C_  ( A  vH  C ) )  ->  ( B  C_  A  /\  B  C_  ( C  vH  B ) ) ) )
3020, 3, 29syl2an 464 . . . . . . 7  |-  ( ( B  e. HAtoms  /\  C  e. HAtoms
)  ->  ( ( C  C_  A  /\  B  C_  ( A  vH  C
) )  ->  ( B  C_  A  /\  B  C_  ( C  vH  B
) ) ) )
31 simpl 444 . . . . . . 7  |-  ( ( B  e. HAtoms  /\  C  e. HAtoms
)  ->  B  e. HAtoms )
3230, 31jctild 528 . . . . . 6  |-  ( ( B  e. HAtoms  /\  C  e. HAtoms
)  ->  ( ( C  C_  A  /\  B  C_  ( A  vH  C
) )  ->  ( B  e. HAtoms  /\  ( B 
C_  A  /\  B  C_  ( C  vH  B
) ) ) ) )
3332impl 604 . . . . 5  |-  ( ( ( ( B  e. HAtoms  /\  C  e. HAtoms )  /\  C  C_  A )  /\  B  C_  ( A  vH  C ) )  -> 
( B  e. HAtoms  /\  ( B  C_  A  /\  B  C_  ( C  vH  B
) ) ) )
34 sseq1 3361 . . . . . . 7  |-  ( x  =  B  ->  (
x  C_  A  <->  B  C_  A
) )
35 oveq2 6080 . . . . . . . 8  |-  ( x  =  B  ->  ( C  vH  x )  =  ( C  vH  B
) )
3635sseq2d 3368 . . . . . . 7  |-  ( x  =  B  ->  ( B  C_  ( C  vH  x )  <->  B  C_  ( C  vH  B ) ) )
3734, 36anbi12d 692 . . . . . 6  |-  ( x  =  B  ->  (
( x  C_  A  /\  B  C_  ( C  vH  x ) )  <-> 
( B  C_  A  /\  B  C_  ( C  vH  B ) ) ) )
3837rspcev 3044 . . . . 5  |-  ( ( B  e. HAtoms  /\  ( B  C_  A  /\  B  C_  ( C  vH  B
) ) )  ->  E. x  e. HAtoms  ( x 
C_  A  /\  B  C_  ( C  vH  x
) ) )
3933, 38syl 16 . . . 4  |-  ( ( ( ( B  e. HAtoms  /\  C  e. HAtoms )  /\  C  C_  A )  /\  B  C_  ( A  vH  C ) )  ->  E. x  e. HAtoms  ( x 
C_  A  /\  B  C_  ( C  vH  x
) ) )
4039adantrl 697 . . 3  |-  ( ( ( ( B  e. HAtoms  /\  C  e. HAtoms )  /\  C  C_  A )  /\  ( A  =/=  0H  /\  B  C_  ( A  vH  C ) ) )  ->  E. x  e. HAtoms  (
x  C_  A  /\  B  C_  ( C  vH  x ) ) )
4140exp31 588 . 2  |-  ( ( B  e. HAtoms  /\  C  e. HAtoms
)  ->  ( C  C_  A  ->  ( ( A  =/=  0H  /\  B  C_  ( A  vH  C
) )  ->  E. x  e. HAtoms  ( x  C_  A  /\  B  C_  ( C  vH  x ) ) ) ) )
42 simpr 448 . . 3  |-  ( ( A  =/=  0H  /\  B  C_  ( A  vH  C ) )  ->  B  C_  ( A  vH  C ) )
43 ioran 477 . . . 4  |-  ( -.  ( B  =  C  \/  C  C_  A
)  <->  ( -.  B  =  C  /\  -.  C  C_  A ) )
441atcvat3i 23887 . . . . . . 7  |-  ( ( B  e. HAtoms  /\  C  e. HAtoms
)  ->  ( (
( -.  B  =  C  /\  -.  C  C_  A )  /\  B  C_  ( A  vH  C
) )  ->  ( A  i^i  ( B  vH  C ) )  e. HAtoms
) )
453ad2antlr 708 . . . . . . . . . . 11  |-  ( ( ( B  e. HAtoms  /\  C  e. HAtoms )  /\  ( ( -.  B  =  C  /\  -.  C  C_  A )  /\  B  C_  ( A  vH  C
) ) )  ->  C  e.  CH )
4644imp 419 . . . . . . . . . . 11  |-  ( ( ( B  e. HAtoms  /\  C  e. HAtoms )  /\  ( ( -.  B  =  C  /\  -.  C  C_  A )  /\  B  C_  ( A  vH  C
) ) )  -> 
( A  i^i  ( B  vH  C ) )  e. HAtoms )
47 simpll 731 . . . . . . . . . . 11  |-  ( ( ( B  e. HAtoms  /\  C  e. HAtoms )  /\  ( ( -.  B  =  C  /\  -.  C  C_  A )  /\  B  C_  ( A  vH  C
) ) )  ->  B  e. HAtoms )
4845, 46, 473jca 1134 . . . . . . . . . 10  |-  ( ( ( B  e. HAtoms  /\  C  e. HAtoms )  /\  ( ( -.  B  =  C  /\  -.  C  C_  A )  /\  B  C_  ( A  vH  C
) ) )  -> 
( C  e.  CH  /\  ( A  i^i  ( B  vH  C ) )  e. HAtoms  /\  B  e. HAtoms )
)
49 inss2 3554 . . . . . . . . . . . . 13  |-  ( A  i^i  ( B  vH  C ) )  C_  ( B  vH  C )
50 chjcom 22996 . . . . . . . . . . . . . 14  |-  ( ( B  e.  CH  /\  C  e.  CH )  ->  ( B  vH  C
)  =  ( C  vH  B ) )
5120, 3, 50syl2an 464 . . . . . . . . . . . . 13  |-  ( ( B  e. HAtoms  /\  C  e. HAtoms
)  ->  ( B  vH  C )  =  ( C  vH  B ) )
5249, 51syl5sseq 3388 . . . . . . . . . . . 12  |-  ( ( B  e. HAtoms  /\  C  e. HAtoms
)  ->  ( A  i^i  ( B  vH  C
) )  C_  ( C  vH  B ) )
5352adantr 452 . . . . . . . . . . 11  |-  ( ( ( B  e. HAtoms  /\  C  e. HAtoms )  /\  ( ( -.  B  =  C  /\  -.  C  C_  A )  /\  B  C_  ( A  vH  C
) ) )  -> 
( A  i^i  ( B  vH  C ) ) 
C_  ( C  vH  B ) )
54 atnssm0 23867 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CH  /\  C  e. HAtoms )  ->  ( -.  C  C_  A  <->  ( A  i^i  C )  =  0H ) )
551, 54mpan 652 . . . . . . . . . . . . . . . 16  |-  ( C  e. HAtoms  ->  ( -.  C  C_  A  <->  ( A  i^i  C )  =  0H ) )
5655adantl 453 . . . . . . . . . . . . . . 15  |-  ( ( B  e. HAtoms  /\  C  e. HAtoms
)  ->  ( -.  C  C_  A  <->  ( A  i^i  C )  =  0H ) )
57 inss1 3553 . . . . . . . . . . . . . . . . . . 19  |-  ( A  i^i  ( B  vH  C ) )  C_  A
58 sslin 3559 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  i^i  ( B  vH  C ) ) 
C_  A  ->  ( C  i^i  ( A  i^i  ( B  vH  C ) ) )  C_  ( C  i^i  A ) )
5957, 58ax-mp 8 . . . . . . . . . . . . . . . . . 18  |-  ( C  i^i  ( A  i^i  ( B  vH  C ) ) )  C_  ( C  i^i  A )
60 incom 3525 . . . . . . . . . . . . . . . . . 18  |-  ( C  i^i  A )  =  ( A  i^i  C
)
6159, 60sseqtri 3372 . . . . . . . . . . . . . . . . 17  |-  ( C  i^i  ( A  i^i  ( B  vH  C ) ) )  C_  ( A  i^i  C )
62 sseq2 3362 . . . . . . . . . . . . . . . . 17  |-  ( ( A  i^i  C )  =  0H  ->  (
( C  i^i  ( A  i^i  ( B  vH  C ) ) ) 
C_  ( A  i^i  C )  <->  ( C  i^i  ( A  i^i  ( B  vH  C ) ) )  C_  0H )
)
6361, 62mpbii 203 . . . . . . . . . . . . . . . 16  |-  ( ( A  i^i  C )  =  0H  ->  ( C  i^i  ( A  i^i  ( B  vH  C ) ) )  C_  0H )
64 simpr 448 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  CH  /\  C  e.  CH )  ->  C  e.  CH )
65 chjcl 22847 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  e.  CH  /\  C  e.  CH )  ->  ( B  vH  C
)  e.  CH )
66 chincl 22989 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  CH  /\  ( B  vH  C )  e.  CH )  -> 
( A  i^i  ( B  vH  C ) )  e.  CH )
671, 65, 66sylancr 645 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  CH  /\  C  e.  CH )  ->  ( A  i^i  ( B  vH  C ) )  e.  CH )
68 chincl 22989 . . . . . . . . . . . . . . . . . . 19  |-  ( ( C  e.  CH  /\  ( A  i^i  ( B  vH  C ) )  e.  CH )  -> 
( C  i^i  ( A  i^i  ( B  vH  C ) ) )  e.  CH )
6964, 67, 68syl2anc 643 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  CH  /\  C  e.  CH )  ->  ( C  i^i  ( A  i^i  ( B  vH  C ) ) )  e.  CH )
7020, 3, 69syl2an 464 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e. HAtoms  /\  C  e. HAtoms
)  ->  ( C  i^i  ( A  i^i  ( B  vH  C ) ) )  e.  CH )
71 chle0 22933 . . . . . . . . . . . . . . . . 17  |-  ( ( C  i^i  ( A  i^i  ( B  vH  C ) ) )  e.  CH  ->  (
( C  i^i  ( A  i^i  ( B  vH  C ) ) ) 
C_  0H  <->  ( C  i^i  ( A  i^i  ( B  vH  C ) ) )  =  0H ) )
7270, 71syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( B  e. HAtoms  /\  C  e. HAtoms
)  ->  ( ( C  i^i  ( A  i^i  ( B  vH  C ) ) )  C_  0H  <->  ( C  i^i  ( A  i^i  ( B  vH  C ) ) )  =  0H ) )
7363, 72syl5ib 211 . . . . . . . . . . . . . . 15  |-  ( ( B  e. HAtoms  /\  C  e. HAtoms
)  ->  ( ( A  i^i  C )  =  0H  ->  ( C  i^i  ( A  i^i  ( B  vH  C ) ) )  =  0H ) )
7456, 73sylbid 207 . . . . . . . . . . . . . 14  |-  ( ( B  e. HAtoms  /\  C  e. HAtoms
)  ->  ( -.  C  C_  A  ->  ( C  i^i  ( A  i^i  ( B  vH  C ) ) )  =  0H ) )
7574imp 419 . . . . . . . . . . . . 13  |-  ( ( ( B  e. HAtoms  /\  C  e. HAtoms )  /\  -.  C  C_  A )  ->  ( C  i^i  ( A  i^i  ( B  vH  C ) ) )  =  0H )
7675adantrl 697 . . . . . . . . . . . 12  |-  ( ( ( B  e. HAtoms  /\  C  e. HAtoms )  /\  ( -.  B  =  C  /\  -.  C  C_  A ) )  ->  ( C  i^i  ( A  i^i  ( B  vH  C ) ) )  =  0H )
7776adantrr 698 . . . . . . . . . . 11  |-  ( ( ( B  e. HAtoms  /\  C  e. HAtoms )  /\  ( ( -.  B  =  C  /\  -.  C  C_  A )  /\  B  C_  ( A  vH  C
) ) )  -> 
( C  i^i  ( A  i^i  ( B  vH  C ) ) )  =  0H )
7853, 77jca 519 . . . . . . . . . 10  |-  ( ( ( B  e. HAtoms  /\  C  e. HAtoms )  /\  ( ( -.  B  =  C  /\  -.  C  C_  A )  /\  B  C_  ( A  vH  C
) ) )  -> 
( ( A  i^i  ( B  vH  C ) )  C_  ( C  vH  B )  /\  ( C  i^i  ( A  i^i  ( B  vH  C ) ) )  =  0H ) )
79 atexch 23872 . . . . . . . . . 10  |-  ( ( C  e.  CH  /\  ( A  i^i  ( B  vH  C ) )  e. HAtoms  /\  B  e. HAtoms )  ->  ( ( ( A  i^i  ( B  vH  C ) )  C_  ( C  vH  B )  /\  ( C  i^i  ( A  i^i  ( B  vH  C ) ) )  =  0H )  ->  B  C_  ( C  vH  ( A  i^i  ( B  vH  C ) ) ) ) )
8048, 78, 79sylc 58 . . . . . . . . 9  |-  ( ( ( B  e. HAtoms  /\  C  e. HAtoms )  /\  ( ( -.  B  =  C  /\  -.  C  C_  A )  /\  B  C_  ( A  vH  C
) ) )  ->  B  C_  ( C  vH  ( A  i^i  ( B  vH  C ) ) ) )
8180, 57jctil 524 . . . . . . . 8  |-  ( ( ( B  e. HAtoms  /\  C  e. HAtoms )  /\  ( ( -.  B  =  C  /\  -.  C  C_  A )  /\  B  C_  ( A  vH  C
) ) )  -> 
( ( A  i^i  ( B  vH  C ) )  C_  A  /\  B  C_  ( C  vH  ( A  i^i  ( B  vH  C ) ) ) ) )
8281ex 424 . . . . . . 7  |-  ( ( B  e. HAtoms  /\  C  e. HAtoms
)  ->  ( (
( -.  B  =  C  /\  -.  C  C_  A )  /\  B  C_  ( A  vH  C
) )  ->  (
( A  i^i  ( B  vH  C ) ) 
C_  A  /\  B  C_  ( C  vH  ( A  i^i  ( B  vH  C ) ) ) ) ) )
8344, 82jcad 520 . . . . . 6  |-  ( ( B  e. HAtoms  /\  C  e. HAtoms
)  ->  ( (
( -.  B  =  C  /\  -.  C  C_  A )  /\  B  C_  ( A  vH  C
) )  ->  (
( A  i^i  ( B  vH  C ) )  e. HAtoms  /\  ( ( A  i^i  ( B  vH  C ) )  C_  A  /\  B  C_  ( C  vH  ( A  i^i  ( B  vH  C ) ) ) ) ) ) )
84 sseq1 3361 . . . . . . . 8  |-  ( x  =  ( A  i^i  ( B  vH  C ) )  ->  ( x  C_  A  <->  ( A  i^i  ( B  vH  C ) )  C_  A )
)
85 oveq2 6080 . . . . . . . . 9  |-  ( x  =  ( A  i^i  ( B  vH  C ) )  ->  ( C  vH  x )  =  ( C  vH  ( A  i^i  ( B  vH  C ) ) ) )
8685sseq2d 3368 . . . . . . . 8  |-  ( x  =  ( A  i^i  ( B  vH  C ) )  ->  ( B  C_  ( C  vH  x
)  <->  B  C_  ( C  vH  ( A  i^i  ( B  vH  C ) ) ) ) )
8784, 86anbi12d 692 . . . . . . 7  |-  ( x  =  ( A  i^i  ( B  vH  C ) )  ->  ( (
x  C_  A  /\  B  C_  ( C  vH  x ) )  <->  ( ( A  i^i  ( B  vH  C ) )  C_  A  /\  B  C_  ( C  vH  ( A  i^i  ( B  vH  C ) ) ) ) ) )
8887rspcev 3044 . . . . . 6  |-  ( ( ( A  i^i  ( B  vH  C ) )  e. HAtoms  /\  ( ( A  i^i  ( B  vH  C ) )  C_  A  /\  B  C_  ( C  vH  ( A  i^i  ( B  vH  C ) ) ) ) )  ->  E. x  e. HAtoms  (
x  C_  A  /\  B  C_  ( C  vH  x ) ) )
8983, 88syl6 31 . . . . 5  |-  ( ( B  e. HAtoms  /\  C  e. HAtoms
)  ->  ( (
( -.  B  =  C  /\  -.  C  C_  A )  /\  B  C_  ( A  vH  C
) )  ->  E. x  e. HAtoms  ( x  C_  A  /\  B  C_  ( C  vH  x ) ) ) )
9089exp3a 426 . . . 4  |-  ( ( B  e. HAtoms  /\  C  e. HAtoms
)  ->  ( ( -.  B  =  C  /\  -.  C  C_  A
)  ->  ( B  C_  ( A  vH  C
)  ->  E. x  e. HAtoms  ( x  C_  A  /\  B  C_  ( C  vH  x ) ) ) ) )
9143, 90syl5bi 209 . . 3  |-  ( ( B  e. HAtoms  /\  C  e. HAtoms
)  ->  ( -.  ( B  =  C  \/  C  C_  A )  ->  ( B  C_  ( A  vH  C )  ->  E. x  e. HAtoms  (
x  C_  A  /\  B  C_  ( C  vH  x ) ) ) ) )
9242, 91syl7 65 . 2  |-  ( ( B  e. HAtoms  /\  C  e. HAtoms
)  ->  ( -.  ( B  =  C  \/  C  C_  A )  ->  ( ( A  =/=  0H  /\  B  C_  ( A  vH  C
) )  ->  E. x  e. HAtoms  ( x  C_  A  /\  B  C_  ( C  vH  x ) ) ) ) )
9319, 41, 92ecase3d 910 1  |-  ( ( B  e. HAtoms  /\  C  e. HAtoms
)  ->  ( ( A  =/=  0H  /\  B  C_  ( A  vH  C
) )  ->  E. x  e. HAtoms  ( x  C_  A  /\  B  C_  ( C  vH  x ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   E.wrex 2698    i^i cin 3311    C_ wss 3312  (class class class)co 6072   CHcch 22420    vH chj 22424   0Hc0h 22426  HAtomscat 22456
This theorem is referenced by:  mdsymlem3  23896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-inf2 7585  ax-cc 8304  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056  ax-pre-sup 9057  ax-addf 9058  ax-mulf 9059  ax-hilex 22490  ax-hfvadd 22491  ax-hvcom 22492  ax-hvass 22493  ax-hv0cl 22494  ax-hvaddid 22495  ax-hfvmul 22496  ax-hvmulid 22497  ax-hvmulass 22498  ax-hvdistr1 22499  ax-hvdistr2 22500  ax-hvmul0 22501  ax-hfi 22569  ax-his1 22572  ax-his2 22573  ax-his3 22574  ax-his4 22575  ax-hcompl 22692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-of 6296  df-1st 6340  df-2nd 6341  df-riota 6540  df-recs 6624  df-rdg 6659  df-1o 6715  df-2o 6716  df-oadd 6719  df-omul 6720  df-er 6896  df-map 7011  df-pm 7012  df-ixp 7055  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-fi 7407  df-sup 7437  df-oi 7468  df-card 7815  df-acn 7818  df-cda 8037  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-div 9667  df-nn 9990  df-2 10047  df-3 10048  df-4 10049  df-5 10050  df-6 10051  df-7 10052  df-8 10053  df-9 10054  df-10 10055  df-n0 10211  df-z 10272  df-dec 10372  df-uz 10478  df-q 10564  df-rp 10602  df-xneg 10699  df-xadd 10700  df-xmul 10701  df-ioo 10909  df-ico 10911  df-icc 10912  df-fz 11033  df-fzo 11124  df-fl 11190  df-seq 11312  df-exp 11371  df-hash 11607  df-cj 11892  df-re 11893  df-im 11894  df-sqr 12028  df-abs 12029  df-clim 12270  df-rlim 12271  df-sum 12468  df-struct 13459  df-ndx 13460  df-slot 13461  df-base 13462  df-sets 13463  df-ress 13464  df-plusg 13530  df-mulr 13531  df-starv 13532  df-sca 13533  df-vsca 13534  df-tset 13536  df-ple 13537  df-ds 13539  df-unif 13540  df-hom 13541  df-cco 13542  df-rest 13638  df-topn 13639  df-topgen 13655  df-pt 13656  df-prds 13659  df-xrs 13714  df-0g 13715  df-gsum 13716  df-qtop 13721  df-imas 13722  df-xps 13724  df-mre 13799  df-mrc 13800  df-acs 13802  df-mnd 14678  df-submnd 14727  df-mulg 14803  df-cntz 15104  df-cmn 15402  df-psmet 16682  df-xmet 16683  df-met 16684  df-bl 16685  df-mopn 16686  df-fbas 16687  df-fg 16688  df-cnfld 16692  df-top 16951  df-bases 16953  df-topon 16954  df-topsp 16955  df-cld 17071  df-ntr 17072  df-cls 17073  df-nei 17150  df-cn 17279  df-cnp 17280  df-lm 17281  df-haus 17367  df-tx 17582  df-hmeo 17775  df-fil 17866  df-fm 17958  df-flim 17959  df-flf 17960  df-xms 18338  df-ms 18339  df-tms 18340  df-cfil 19196  df-cau 19197  df-cmet 19198  df-grpo 21767  df-gid 21768  df-ginv 21769  df-gdiv 21770  df-ablo 21858  df-subgo 21878  df-vc 22013  df-nv 22059  df-va 22062  df-ba 22063  df-sm 22064  df-0v 22065  df-vs 22066  df-nmcv 22067  df-ims 22068  df-dip 22185  df-ssp 22209  df-ph 22302  df-cbn 22353  df-hnorm 22459  df-hba 22460  df-hvsub 22462  df-hlim 22463  df-hcau 22464  df-sh 22697  df-ch 22712  df-oc 22742  df-ch0 22743  df-shs 22798  df-span 22799  df-chj 22800  df-chsup 22801  df-pjh 22885  df-cv 23770  df-at 23829
  Copyright terms: Public domain W3C validator