Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlatmstc Unicode version

Theorem atlatmstc 29848
Description: An atomic, complete, orthomodular lattice is atomistic i.e. every element is the join of the atoms under it. See remark before Proposition 1 in [Kalmbach] p. 140; also remark in [BeltramettiCassinelli] p. 98. (hatomistici 23848 analog.) (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
atlatmstc.b  |-  B  =  ( Base `  K
)
atlatmstc.l  |-  .<_  =  ( le `  K )
atlatmstc.u  |-  .1.  =  ( lub `  K )
atlatmstc.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
atlatmstc  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  ->  (  .1.  `  { y  e.  A  |  y  .<_  X } )  =  X )
Distinct variable groups:    y,  .<_    y, A    y, B    y, X
Allowed substitution hints:    .1. ( y)    K( y)

Proof of Theorem atlatmstc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl2 961 . . . 4  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  ->  K  e.  CLat )
2 ssrab2 3415 . . . . 5  |-  { y  e.  B  |  y 
.<_  X }  C_  B
3 atlatmstc.b . . . . . . 7  |-  B  =  ( Base `  K
)
4 atlatmstc.a . . . . . . 7  |-  A  =  ( Atoms `  K )
53, 4atssbase 29819 . . . . . 6  |-  A  C_  B
6 rabss2 3413 . . . . . 6  |-  ( A 
C_  B  ->  { y  e.  A  |  y 
.<_  X }  C_  { y  e.  B  |  y 
.<_  X } )
75, 6ax-mp 8 . . . . 5  |-  { y  e.  A  |  y 
.<_  X }  C_  { y  e.  B  |  y 
.<_  X }
8 atlatmstc.l . . . . . 6  |-  .<_  =  ( le `  K )
9 atlatmstc.u . . . . . 6  |-  .1.  =  ( lub `  K )
103, 8, 9lubss 14531 . . . . 5  |-  ( ( K  e.  CLat  /\  {
y  e.  B  | 
y  .<_  X }  C_  B  /\  { y  e.  A  |  y  .<_  X }  C_  { y  e.  B  |  y 
.<_  X } )  -> 
(  .1.  `  {
y  e.  A  | 
y  .<_  X } ) 
.<_  (  .1.  `  {
y  e.  B  | 
y  .<_  X } ) )
112, 7, 10mp3an23 1271 . . . 4  |-  ( K  e.  CLat  ->  (  .1.  `  { y  e.  A  |  y  .<_  X }
)  .<_  (  .1.  `  { y  e.  B  |  y  .<_  X }
) )
121, 11syl 16 . . 3  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  ->  (  .1.  `  { y  e.  A  |  y  .<_  X } )  .<_  (  .1.  `  { y  e.  B  |  y  .<_  X }
) )
13 atlpos 29830 . . . . 5  |-  ( K  e.  AtLat  ->  K  e.  Poset
)
14133ad2ant3 980 . . . 4  |-  ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  ->  K  e.  Poset )
153, 8, 9lubid 14422 . . . 4  |-  ( ( K  e.  Poset  /\  X  e.  B )  ->  (  .1.  `  { y  e.  B  |  y  .<_  X } )  =  X )
1614, 15sylan 458 . . 3  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  ->  (  .1.  `  { y  e.  B  |  y  .<_  X } )  =  X )
1712, 16breqtrd 4223 . 2  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  ->  (  .1.  `  { y  e.  A  |  y  .<_  X } )  .<_  X )
18 breq1 4202 . . . . . . . . . 10  |-  ( y  =  x  ->  (
y  .<_  X  <->  x  .<_  X ) )
1918elrab 3079 . . . . . . . . 9  |-  ( x  e.  { y  e.  A  |  y  .<_  X }  <->  ( x  e.  A  /\  x  .<_  X ) )
20 simpll2 997 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  /\  x  e.  { y  e.  A  |  y 
.<_  X } )  ->  K  e.  CLat )
21 ssrab2 3415 . . . . . . . . . . . . 13  |-  { y  e.  A  |  y 
.<_  X }  C_  A
2221, 5sstri 3344 . . . . . . . . . . . 12  |-  { y  e.  A  |  y 
.<_  X }  C_  B
233, 8, 9lubel 14532 . . . . . . . . . . . 12  |-  ( ( K  e.  CLat  /\  x  e.  { y  e.  A  |  y  .<_  X }  /\  { y  e.  A  |  y  .<_  X }  C_  B )  ->  x  .<_  (  .1.  `  {
y  e.  A  | 
y  .<_  X } ) )
2422, 23mp3an3 1268 . . . . . . . . . . 11  |-  ( ( K  e.  CLat  /\  x  e.  { y  e.  A  |  y  .<_  X }
)  ->  x  .<_  (  .1.  `  { y  e.  A  |  y  .<_  X } ) )
2520, 24sylancom 649 . . . . . . . . . 10  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  /\  x  e.  { y  e.  A  |  y 
.<_  X } )  ->  x  .<_  (  .1.  `  { y  e.  A  |  y  .<_  X }
) )
2625ex 424 . . . . . . . . 9  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  ->  (
x  e.  { y  e.  A  |  y 
.<_  X }  ->  x  .<_  (  .1.  `  {
y  e.  A  | 
y  .<_  X } ) ) )
2719, 26syl5bir 210 . . . . . . . 8  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  ->  (
( x  e.  A  /\  x  .<_  X )  ->  x  .<_  (  .1.  `  { y  e.  A  |  y  .<_  X }
) ) )
2827expdimp 427 . . . . . . 7  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  /\  x  e.  A
)  ->  ( x  .<_  X  ->  x  .<_  (  .1.  `  { y  e.  A  |  y  .<_  X } ) ) )
29 simpll3 998 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  /\  x  e.  A
)  ->  K  e.  AtLat
)
30 eqid 2430 . . . . . . . . . . . 12  |-  ( 0.
`  K )  =  ( 0. `  K
)
3130, 4atn0 29837 . . . . . . . . . . 11  |-  ( ( K  e.  AtLat  /\  x  e.  A )  ->  x  =/=  ( 0. `  K
) )
3229, 31sylancom 649 . . . . . . . . . 10  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  /\  x  e.  A
)  ->  x  =/=  ( 0. `  K ) )
3332adantr 452 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat
)  /\  X  e.  B )  /\  x  e.  A )  /\  x  .<_  (  .1.  `  {
y  e.  A  | 
y  .<_  X } ) )  ->  x  =/=  ( 0. `  K ) )
34 simpl3 962 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  ->  K  e.  AtLat )
35 atllat 29829 . . . . . . . . . . . . . . . 16  |-  ( K  e.  AtLat  ->  K  e.  Lat )
3634, 35syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  ->  K  e.  Lat )
3736adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  /\  x  e.  A
)  ->  K  e.  Lat )
383, 4atbase 29818 . . . . . . . . . . . . . . 15  |-  ( x  e.  A  ->  x  e.  B )
3938adantl 453 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  /\  x  e.  A
)  ->  x  e.  B )
403, 9clatlubcl 14523 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  CLat  /\  {
y  e.  A  | 
y  .<_  X }  C_  B )  ->  (  .1.  `  { y  e.  A  |  y  .<_  X } )  e.  B
)
411, 22, 40sylancl 644 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  ->  (  .1.  `  { y  e.  A  |  y  .<_  X } )  e.  B
)
4241adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  /\  x  e.  A
)  ->  (  .1.  `  { y  e.  A  |  y  .<_  X }
)  e.  B )
43 simpl1 960 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  ->  K  e.  OML )
44 omlop 29770 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  OML  ->  K  e.  OP )
4543, 44syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  ->  K  e.  OP )
46 eqid 2430 . . . . . . . . . . . . . . . . 17  |-  ( oc
`  K )  =  ( oc `  K
)
473, 46opoccl 29723 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  OP  /\  (  .1.  `  { y  e.  A  |  y  .<_  X } )  e.  B )  ->  (
( oc `  K
) `  (  .1.  `  { y  e.  A  |  y  .<_  X }
) )  e.  B
)
4845, 41, 47syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  ->  (
( oc `  K
) `  (  .1.  `  { y  e.  A  |  y  .<_  X }
) )  e.  B
)
4948adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  /\  x  e.  A
)  ->  ( ( oc `  K ) `  (  .1.  `  { y  e.  A  |  y  .<_  X } ) )  e.  B )
50 eqid 2430 . . . . . . . . . . . . . . 15  |-  ( meet `  K )  =  (
meet `  K )
513, 8, 50latlem12 14490 . . . . . . . . . . . . . 14  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  (  .1.  `  {
y  e.  A  | 
y  .<_  X } )  e.  B  /\  (
( oc `  K
) `  (  .1.  `  { y  e.  A  |  y  .<_  X }
) )  e.  B
) )  ->  (
( x  .<_  (  .1.  `  { y  e.  A  |  y  .<_  X }
)  /\  x  .<_  ( ( oc `  K
) `  (  .1.  `  { y  e.  A  |  y  .<_  X }
) ) )  <->  x  .<_  ( (  .1.  `  {
y  e.  A  | 
y  .<_  X } ) ( meet `  K
) ( ( oc
`  K ) `  (  .1.  `  { y  e.  A  |  y  .<_  X } ) ) ) ) )
5237, 39, 42, 49, 51syl13anc 1186 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  /\  x  e.  A
)  ->  ( (
x  .<_  (  .1.  `  { y  e.  A  |  y  .<_  X }
)  /\  x  .<_  ( ( oc `  K
) `  (  .1.  `  { y  e.  A  |  y  .<_  X }
) ) )  <->  x  .<_  ( (  .1.  `  {
y  e.  A  | 
y  .<_  X } ) ( meet `  K
) ( ( oc
`  K ) `  (  .1.  `  { y  e.  A  |  y  .<_  X } ) ) ) ) )
533, 46, 50, 30opnoncon 29737 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  OP  /\  (  .1.  `  { y  e.  A  |  y  .<_  X } )  e.  B )  ->  (
(  .1.  `  {
y  e.  A  | 
y  .<_  X } ) ( meet `  K
) ( ( oc
`  K ) `  (  .1.  `  { y  e.  A  |  y  .<_  X } ) ) )  =  ( 0.
`  K ) )
5445, 41, 53syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  ->  (
(  .1.  `  {
y  e.  A  | 
y  .<_  X } ) ( meet `  K
) ( ( oc
`  K ) `  (  .1.  `  { y  e.  A  |  y  .<_  X } ) ) )  =  ( 0.
`  K ) )
5554breq2d 4211 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  ->  (
x  .<_  ( (  .1.  `  { y  e.  A  |  y  .<_  X }
) ( meet `  K
) ( ( oc
`  K ) `  (  .1.  `  { y  e.  A  |  y  .<_  X } ) ) )  <->  x  .<_  ( 0.
`  K ) ) )
5655adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  /\  x  e.  A
)  ->  ( x  .<_  ( (  .1.  `  { y  e.  A  |  y  .<_  X }
) ( meet `  K
) ( ( oc
`  K ) `  (  .1.  `  { y  e.  A  |  y  .<_  X } ) ) )  <->  x  .<_  ( 0.
`  K ) ) )
573, 8, 30ople0 29716 . . . . . . . . . . . . . 14  |-  ( ( K  e.  OP  /\  x  e.  B )  ->  ( x  .<_  ( 0.
`  K )  <->  x  =  ( 0. `  K ) ) )
5845, 38, 57syl2an 464 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  /\  x  e.  A
)  ->  ( x  .<_  ( 0. `  K
)  <->  x  =  ( 0. `  K ) ) )
5952, 56, 583bitrd 271 . . . . . . . . . . . 12  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  /\  x  e.  A
)  ->  ( (
x  .<_  (  .1.  `  { y  e.  A  |  y  .<_  X }
)  /\  x  .<_  ( ( oc `  K
) `  (  .1.  `  { y  e.  A  |  y  .<_  X }
) ) )  <->  x  =  ( 0. `  K ) ) )
6059biimpa 471 . . . . . . . . . . 11  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat
)  /\  X  e.  B )  /\  x  e.  A )  /\  (
x  .<_  (  .1.  `  { y  e.  A  |  y  .<_  X }
)  /\  x  .<_  ( ( oc `  K
) `  (  .1.  `  { y  e.  A  |  y  .<_  X }
) ) ) )  ->  x  =  ( 0. `  K ) )
6160expr 599 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat
)  /\  X  e.  B )  /\  x  e.  A )  /\  x  .<_  (  .1.  `  {
y  e.  A  | 
y  .<_  X } ) )  ->  ( x  .<_  ( ( oc `  K ) `  (  .1.  `  { y  e.  A  |  y  .<_  X } ) )  ->  x  =  ( 0. `  K ) ) )
6261necon3ad 2629 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat
)  /\  X  e.  B )  /\  x  e.  A )  /\  x  .<_  (  .1.  `  {
y  e.  A  | 
y  .<_  X } ) )  ->  ( x  =/=  ( 0. `  K
)  ->  -.  x  .<_  ( ( oc `  K ) `  (  .1.  `  { y  e.  A  |  y  .<_  X } ) ) ) )
6333, 62mpd 15 . . . . . . . 8  |-  ( ( ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat
)  /\  X  e.  B )  /\  x  e.  A )  /\  x  .<_  (  .1.  `  {
y  e.  A  | 
y  .<_  X } ) )  ->  -.  x  .<_  ( ( oc `  K ) `  (  .1.  `  { y  e.  A  |  y  .<_  X } ) ) )
6463ex 424 . . . . . . 7  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  /\  x  e.  A
)  ->  ( x  .<_  (  .1.  `  {
y  e.  A  | 
y  .<_  X } )  ->  -.  x  .<_  ( ( oc `  K
) `  (  .1.  `  { y  e.  A  |  y  .<_  X }
) ) ) )
6528, 64syld 42 . . . . . 6  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  /\  x  e.  A
)  ->  ( x  .<_  X  ->  -.  x  .<_  ( ( oc `  K ) `  (  .1.  `  { y  e.  A  |  y  .<_  X } ) ) ) )
66 imnan 412 . . . . . 6  |-  ( ( x  .<_  X  ->  -.  x  .<_  ( ( oc `  K ) `  (  .1.  `  { y  e.  A  |  y  .<_  X } ) ) )  <->  -.  ( x  .<_  X  /\  x  .<_  ( ( oc `  K
) `  (  .1.  `  { y  e.  A  |  y  .<_  X }
) ) ) )
6765, 66sylib 189 . . . . 5  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  /\  x  e.  A
)  ->  -.  (
x  .<_  X  /\  x  .<_  ( ( oc `  K ) `  (  .1.  `  { y  e.  A  |  y  .<_  X } ) ) ) )
68 simplr 732 . . . . . 6  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  /\  x  e.  A
)  ->  X  e.  B )
693, 8, 50latlem12 14490 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  X  e.  B  /\  ( ( oc `  K ) `  (  .1.  `  { y  e.  A  |  y  .<_  X } ) )  e.  B ) )  -> 
( ( x  .<_  X  /\  x  .<_  ( ( oc `  K ) `
 (  .1.  `  { y  e.  A  |  y  .<_  X }
) ) )  <->  x  .<_  ( X ( meet `  K
) ( ( oc
`  K ) `  (  .1.  `  { y  e.  A  |  y  .<_  X } ) ) ) ) )
7037, 39, 68, 49, 69syl13anc 1186 . . . . 5  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  /\  x  e.  A
)  ->  ( (
x  .<_  X  /\  x  .<_  ( ( oc `  K ) `  (  .1.  `  { y  e.  A  |  y  .<_  X } ) ) )  <-> 
x  .<_  ( X (
meet `  K )
( ( oc `  K ) `  (  .1.  `  { y  e.  A  |  y  .<_  X } ) ) ) ) )
7167, 70mtbid 292 . . . 4  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  /\  x  e.  A
)  ->  -.  x  .<_  ( X ( meet `  K ) ( ( oc `  K ) `
 (  .1.  `  { y  e.  A  |  y  .<_  X }
) ) ) )
7271nrexdv 2796 . . 3  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  ->  -.  E. x  e.  A  x 
.<_  ( X ( meet `  K ) ( ( oc `  K ) `
 (  .1.  `  { y  e.  A  |  y  .<_  X }
) ) ) )
73 simpll3 998 . . . . . 6  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  /\  ( X ( meet `  K ) ( ( oc `  K ) `
 (  .1.  `  { y  e.  A  |  y  .<_  X }
) ) )  =/=  ( 0. `  K
) )  ->  K  e.  AtLat )
74 simpr 448 . . . . . . . 8  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  ->  X  e.  B )
753, 50latmcl 14463 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  ( ( oc `  K ) `  (  .1.  `  { y  e.  A  |  y  .<_  X } ) )  e.  B )  ->  ( X ( meet `  K
) ( ( oc
`  K ) `  (  .1.  `  { y  e.  A  |  y  .<_  X } ) ) )  e.  B )
7636, 74, 48, 75syl3anc 1184 . . . . . . 7  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  ->  ( X ( meet `  K
) ( ( oc
`  K ) `  (  .1.  `  { y  e.  A  |  y  .<_  X } ) ) )  e.  B )
7776adantr 452 . . . . . 6  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  /\  ( X ( meet `  K ) ( ( oc `  K ) `
 (  .1.  `  { y  e.  A  |  y  .<_  X }
) ) )  =/=  ( 0. `  K
) )  ->  ( X ( meet `  K
) ( ( oc
`  K ) `  (  .1.  `  { y  e.  A  |  y  .<_  X } ) ) )  e.  B )
78 simpr 448 . . . . . 6  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  /\  ( X ( meet `  K ) ( ( oc `  K ) `
 (  .1.  `  { y  e.  A  |  y  .<_  X }
) ) )  =/=  ( 0. `  K
) )  ->  ( X ( meet `  K
) ( ( oc
`  K ) `  (  .1.  `  { y  e.  A  |  y  .<_  X } ) ) )  =/=  ( 0.
`  K ) )
793, 8, 30, 4atlex 29845 . . . . . 6  |-  ( ( K  e.  AtLat  /\  ( X ( meet `  K
) ( ( oc
`  K ) `  (  .1.  `  { y  e.  A  |  y  .<_  X } ) ) )  e.  B  /\  ( X ( meet `  K
) ( ( oc
`  K ) `  (  .1.  `  { y  e.  A  |  y  .<_  X } ) ) )  =/=  ( 0.
`  K ) )  ->  E. x  e.  A  x  .<_  ( X (
meet `  K )
( ( oc `  K ) `  (  .1.  `  { y  e.  A  |  y  .<_  X } ) ) ) )
8073, 77, 78, 79syl3anc 1184 . . . . 5  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  /\  ( X ( meet `  K ) ( ( oc `  K ) `
 (  .1.  `  { y  e.  A  |  y  .<_  X }
) ) )  =/=  ( 0. `  K
) )  ->  E. x  e.  A  x  .<_  ( X ( meet `  K
) ( ( oc
`  K ) `  (  .1.  `  { y  e.  A  |  y  .<_  X } ) ) ) )
8180ex 424 . . . 4  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  ->  (
( X ( meet `  K ) ( ( oc `  K ) `
 (  .1.  `  { y  e.  A  |  y  .<_  X }
) ) )  =/=  ( 0. `  K
)  ->  E. x  e.  A  x  .<_  ( X ( meet `  K
) ( ( oc
`  K ) `  (  .1.  `  { y  e.  A  |  y  .<_  X } ) ) ) ) )
8281necon1bd 2661 . . 3  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  ->  ( -.  E. x  e.  A  x  .<_  ( X (
meet `  K )
( ( oc `  K ) `  (  .1.  `  { y  e.  A  |  y  .<_  X } ) ) )  ->  ( X (
meet `  K )
( ( oc `  K ) `  (  .1.  `  { y  e.  A  |  y  .<_  X } ) ) )  =  ( 0. `  K ) ) )
8372, 82mpd 15 . 2  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  ->  ( X ( meet `  K
) ( ( oc
`  K ) `  (  .1.  `  { y  e.  A  |  y  .<_  X } ) ) )  =  ( 0.
`  K ) )
843, 8, 50, 46, 30omllaw3 29774 . . 3  |-  ( ( K  e.  OML  /\  (  .1.  `  { y  e.  A  |  y  .<_  X } )  e.  B  /\  X  e.  B )  ->  (
( (  .1.  `  { y  e.  A  |  y  .<_  X }
)  .<_  X  /\  ( X ( meet `  K
) ( ( oc
`  K ) `  (  .1.  `  { y  e.  A  |  y  .<_  X } ) ) )  =  ( 0.
`  K ) )  ->  (  .1.  `  { y  e.  A  |  y  .<_  X }
)  =  X ) )
8543, 41, 74, 84syl3anc 1184 . 2  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  ->  (
( (  .1.  `  { y  e.  A  |  y  .<_  X }
)  .<_  X  /\  ( X ( meet `  K
) ( ( oc
`  K ) `  (  .1.  `  { y  e.  A  |  y  .<_  X } ) ) )  =  ( 0.
`  K ) )  ->  (  .1.  `  { y  e.  A  |  y  .<_  X }
)  =  X ) )
8617, 83, 85mp2and 661 1  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  ->  (  .1.  `  { y  e.  A  |  y  .<_  X } )  =  X )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2593   E.wrex 2693   {crab 2696    C_ wss 3307   class class class wbr 4199   ` cfv 5440  (class class class)co 6067   Basecbs 13452   lecple 13519   occoc 13520   Posetcpo 14380   lubclub 14382   meetcmee 14385   0.cp0 14449   Latclat 14457   CLatccla 14519   OPcops 29701   OMLcoml 29704   Atomscatm 29792   AtLatcal 29793
This theorem is referenced by:  atlatle  29849  hlatmstcOLDN  29925  pmaple  30289  pol1N  30438  polpmapN  30440  pmaplubN  30452
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-rep 4307  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-nel 2596  df-ral 2697  df-rex 2698  df-reu 2699  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-op 3810  df-uni 4003  df-iun 4082  df-br 4200  df-opab 4254  df-mpt 4255  df-id 4485  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-ov 6070  df-oprab 6071  df-mpt2 6072  df-1st 6335  df-2nd 6336  df-undef 6529  df-riota 6535  df-poset 14386  df-plt 14398  df-lub 14414  df-glb 14415  df-join 14416  df-meet 14417  df-p0 14451  df-lat 14458  df-clat 14520  df-oposet 29705  df-ol 29707  df-oml 29708  df-covers 29795  df-ats 29796  df-atl 29827
  Copyright terms: Public domain W3C validator