Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atpsubN Unicode version

Theorem atpsubN 29072
Description: The set of all atoms is a projective subspace. Remark below Definition 15.1 of [MaedaMaeda] p. 61. (Contributed by NM, 13-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
atpsub.a  |-  A  =  ( Atoms `  K )
atpsub.s  |-  S  =  ( PSubSp `  K )
Assertion
Ref Expression
atpsubN  |-  ( K  e.  V  ->  A  e.  S )

Proof of Theorem atpsubN
StepHypRef Expression
1 ssid 3139 . . 3  |-  A  C_  A
2 ax-1 7 . . . . 5  |-  ( r  e.  A  ->  (
r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  A ) )
32rgen 2579 . . . 4  |-  A. r  e.  A  ( r
( le `  K
) ( p (
join `  K )
q )  ->  r  e.  A )
43rgen2w 2582 . . 3  |-  A. p  e.  A  A. q  e.  A  A. r  e.  A  ( r
( le `  K
) ( p (
join `  K )
q )  ->  r  e.  A )
51, 4pm3.2i 443 . 2  |-  ( A 
C_  A  /\  A. p  e.  A  A. q  e.  A  A. r  e.  A  (
r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  A ) )
6 eqid 2256 . . 3  |-  ( le
`  K )  =  ( le `  K
)
7 eqid 2256 . . 3  |-  ( join `  K )  =  (
join `  K )
8 atpsub.a . . 3  |-  A  =  ( Atoms `  K )
9 atpsub.s . . 3  |-  S  =  ( PSubSp `  K )
106, 7, 8, 9ispsubsp 29064 . 2  |-  ( K  e.  V  ->  ( A  e.  S  <->  ( A  C_  A  /\  A. p  e.  A  A. q  e.  A  A. r  e.  A  ( r
( le `  K
) ( p (
join `  K )
q )  ->  r  e.  A ) ) ) )
115, 10mpbiri 226 1  |-  ( K  e.  V  ->  A  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2516    C_ wss 3094   class class class wbr 3963   ` cfv 4638  (class class class)co 5757   lecple 13142   joincjn 14005   Atomscatm 28583   PSubSpcpsubsp 28815
This theorem is referenced by:  pclvalN  29209  pclclN  29210
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-rab 2523  df-v 2742  df-sbc 2936  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fv 4654  df-ov 5760  df-psubsp 28822
  Copyright terms: Public domain W3C validator