Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-15 Structured version   Unicode version

Axiom ax-15 2220
 Description: Axiom of Quantifier Introduction. One of the equality and substitution axioms for a non-logical predicate in our predicate calculus with equality. Axiom scheme C14' in [Megill] p. 448 (p. 16 of the preprint). It is redundant if we include ax-17 1626; see theorem ax15 2107. Alternately, ax-17 1626 becomes unnecessary in principle with this axiom, but we lose the more powerful metalogic afforded by ax-17 1626. We retain ax-15 2220 here to provide completeness for systems with the simpler metalogic that results from omitting ax-17 1626, which might be easier to study for some theoretical purposes. This axiom is obsolete and should no longer be used. It is proved above as theorem ax15 2107. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)
Assertion
Ref Expression
ax-15

Detailed syntax breakdown of Axiom ax-15
StepHypRef Expression
1 vz . . . . 5
2 vx . . . . 5
31, 2weq 1653 . . . 4
43, 1wal 1549 . . 3
54wn 3 . 2
6 vy . . . . . 6
71, 6weq 1653 . . . . 5
87, 1wal 1549 . . . 4
98wn 3 . . 3
102, 6wel 1726 . . . 4
1110, 1wal 1549 . . . 4
1210, 11wi 4 . . 3
139, 12wi 4 . 2
145, 13wi 4 1
 Colors of variables: wff set class This axiom is referenced by:  ax17el  2266  ax11el  2271
 Copyright terms: Public domain W3C validator