MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-6o Unicode version

Axiom ax-6o 2089
Description: Axiom of Quantified Negation. This axiom is used to manipulate negated quantifiers. One of the 4 axioms of pure predicate calculus. Equivalent to axiom scheme C7' in [Megill] p. 448 (p. 16 of the preprint). An alternate axiomatization could use ax467 2121 in place of ax-4 2087, ax-6o 2089, and ax-7 1720.

This axiom is obsolete and should no longer be used. It is proved above as theorem ax6o 1735. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)

Assertion
Ref Expression
ax-6o  |-  ( -. 
A. x  -.  A. x ph  ->  ph )

Detailed syntax breakdown of Axiom ax-6o
StepHypRef Expression
1 wph . . . . . 6  wff  ph
2 vx . . . . . 6  set  x
31, 2wal 1530 . . . . 5  wff  A. x ph
43wn 3 . . . 4  wff  -.  A. x ph
54, 2wal 1530 . . 3  wff  A. x  -.  A. x ph
65wn 3 . 2  wff  -.  A. x  -.  A. x ph
76, 1wi 4 1  wff  ( -. 
A. x  -.  A. x ph  ->  ph )
Colors of variables: wff set class
This axiom is referenced by:  ax6  2099  ax9from9o  2100  equid1  2110  ax46  2114  ax67  2117  ax467  2121  equid1ALT  2128
  Copyright terms: Public domain W3C validator