Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax-7v Unicode version

Axiom ax-7v 29419
Description: Experiment to see if ax-7 1720 can be unbundled i.e. can be derived from ax-7v 29419. This axiom is temporary. It will be replaced with a theorem derived from ax-7 1720 if we are successful, otherwise will be deleted. (Contributed by NM, 9-Oct-2017.)
Assertion
Ref Expression
ax-7v  |-  ( A. x A. y ph  ->  A. y A. x ph )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Detailed syntax breakdown of Axiom ax-7v
StepHypRef Expression
1 wph . . . 4  wff  ph
2 vy . . . 4  set  y
31, 2wal 1530 . . 3  wff  A. y ph
4 vx . . 3  set  x
53, 4wal 1530 . 2  wff  A. x A. y ph
61, 4wal 1530 . . 3  wff  A. x ph
76, 2wal 1530 . 2  wff  A. y A. x ph
85, 7wi 4 1  wff  ( A. x A. y ph  ->  A. y A. x ph )
Colors of variables: wff set class
This axiom is referenced by:  ax7vAUX7  29420
  Copyright terms: Public domain W3C validator