MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-ac Unicode version

Axiom ax-ac 8272
Description: Axiom of Choice. The Axiom of Choice (AC) is usually considered an extension of ZF set theory rather than a proper part of it. It is sometimes considered philosophically controversial because it asserts the existence of a set without telling us what the set is. ZF set theory that includes AC is called ZFC.

The unpublished version given here says that given any set  x, there exists a  y that is a collection of unordered pairs, one pair for each non-empty member of  x. One entry in the pair is the member of  x, and the other entry is some arbitrary member of that member of  x. See the rewritten version ac3 8275 for a more detailed explanation. Theorem ac2 8274 shows an equivalent written compactly with restricted quantifiers.

This version was specifically crafted to be short when expanded to primitives. Kurt Maes' 5-quantifier version ackm 8278 is slightly shorter when the biconditional of ax-ac 8272 is expanded into implication and negation. In axac3 8277 we allow the constant CHOICE to represent the Axiom of Choice; this simplifies the representation of theorems like gchac 8481 (the Generalized Continuum Hypothesis implies the Axiom of Choice).

Standard textbook versions of AC are derived as ac8 8305, ac5 8290, and ac7 8286. The Axiom of Regularity ax-reg 7493 (among others) is used to derive our version from the standard ones; this reverse derivation is shown as theorem dfac2 7944. Equivalents to AC are the well-ordering theorem weth 8308 and Zorn's lemma zorn 8320. See ac4 8288 for comments about stronger versions of AC.

In order to avoid uses of ax-reg 7493 for derivation of AC equivalents, we provide ax-ac2 8276 (due to Kurt Maes), which is equivalent to the standard AC of textbooks. The derivation of ax-ac2 8276 from ax-ac 8272 is shown by theorem axac2 8279, and the reverse derivation by axac 8280. Therefore, new proofs should normally use ax-ac2 8276 instead. (New usage is discouraged.) (Contributed by NM, 18-Jul-1996.)

Assertion
Ref Expression
ax-ac  |-  E. y A. z A. w ( ( z  e.  w  /\  w  e.  x
)  ->  E. v A. u ( E. t
( ( u  e.  w  /\  w  e.  t )  /\  (
u  e.  t  /\  t  e.  y )
)  <->  u  =  v
) )
Distinct variable group:    x, y, z, w, v, u, t

Detailed syntax breakdown of Axiom ax-ac
StepHypRef Expression
1 vz . . . . . . 7  set  z
2 vw . . . . . . 7  set  w
31, 2wel 1718 . . . . . 6  wff  z  e.  w
4 vx . . . . . . 7  set  x
52, 4wel 1718 . . . . . 6  wff  w  e.  x
63, 5wa 359 . . . . 5  wff  ( z  e.  w  /\  w  e.  x )
7 vu . . . . . . . . . . . 12  set  u
87, 2wel 1718 . . . . . . . . . . 11  wff  u  e.  w
9 vt . . . . . . . . . . . 12  set  t
102, 9wel 1718 . . . . . . . . . . 11  wff  w  e.  t
118, 10wa 359 . . . . . . . . . 10  wff  ( u  e.  w  /\  w  e.  t )
127, 9wel 1718 . . . . . . . . . . 11  wff  u  e.  t
13 vy . . . . . . . . . . . 12  set  y
149, 13wel 1718 . . . . . . . . . . 11  wff  t  e.  y
1512, 14wa 359 . . . . . . . . . 10  wff  ( u  e.  t  /\  t  e.  y )
1611, 15wa 359 . . . . . . . . 9  wff  ( ( u  e.  w  /\  w  e.  t )  /\  ( u  e.  t  /\  t  e.  y ) )
1716, 9wex 1547 . . . . . . . 8  wff  E. t
( ( u  e.  w  /\  w  e.  t )  /\  (
u  e.  t  /\  t  e.  y )
)
18 vv . . . . . . . . 9  set  v
197, 18weq 1650 . . . . . . . 8  wff  u  =  v
2017, 19wb 177 . . . . . . 7  wff  ( E. t ( ( u  e.  w  /\  w  e.  t )  /\  (
u  e.  t  /\  t  e.  y )
)  <->  u  =  v
)
2120, 7wal 1546 . . . . . 6  wff  A. u
( E. t ( ( u  e.  w  /\  w  e.  t
)  /\  ( u  e.  t  /\  t  e.  y ) )  <->  u  =  v )
2221, 18wex 1547 . . . . 5  wff  E. v A. u ( E. t
( ( u  e.  w  /\  w  e.  t )  /\  (
u  e.  t  /\  t  e.  y )
)  <->  u  =  v
)
236, 22wi 4 . . . 4  wff  ( ( z  e.  w  /\  w  e.  x )  ->  E. v A. u
( E. t ( ( u  e.  w  /\  w  e.  t
)  /\  ( u  e.  t  /\  t  e.  y ) )  <->  u  =  v ) )
2423, 2wal 1546 . . 3  wff  A. w
( ( z  e.  w  /\  w  e.  x )  ->  E. v A. u ( E. t
( ( u  e.  w  /\  w  e.  t )  /\  (
u  e.  t  /\  t  e.  y )
)  <->  u  =  v
) )
2524, 1wal 1546 . 2  wff  A. z A. w ( ( z  e.  w  /\  w  e.  x )  ->  E. v A. u ( E. t
( ( u  e.  w  /\  w  e.  t )  /\  (
u  e.  t  /\  t  e.  y )
)  <->  u  =  v
) )
2625, 13wex 1547 1  wff  E. y A. z A. w ( ( z  e.  w  /\  w  e.  x
)  ->  E. v A. u ( E. t
( ( u  e.  w  /\  w  e.  t )  /\  (
u  e.  t  /\  t  e.  y )
)  <->  u  =  v
) )
Colors of variables: wff set class
This axiom is referenced by:  zfac  8273  ac2  8274
  Copyright terms: Public domain W3C validator