Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-ac Structured version   Unicode version

Axiom ax-ac 8339
 Description: Axiom of Choice. The Axiom of Choice (AC) is usually considered an extension of ZF set theory rather than a proper part of it. It is sometimes considered philosophically controversial because it asserts the existence of a set without telling us what the set is. ZF set theory that includes AC is called ZFC. The unpublished version given here says that given any set , there exists a that is a collection of unordered pairs, one pair for each non-empty member of . One entry in the pair is the member of , and the other entry is some arbitrary member of that member of . See the rewritten version ac3 8342 for a more detailed explanation. Theorem ac2 8341 shows an equivalent written compactly with restricted quantifiers. This version was specifically crafted to be short when expanded to primitives. Kurt Maes' 5-quantifier version ackm 8345 is slightly shorter when the biconditional of ax-ac 8339 is expanded into implication and negation. In axac3 8344 we allow the constant CHOICE to represent the Axiom of Choice; this simplifies the representation of theorems like gchac 8548 (the Generalized Continuum Hypothesis implies the Axiom of Choice). Standard textbook versions of AC are derived as ac8 8372, ac5 8357, and ac7 8353. The Axiom of Regularity ax-reg 7560 (among others) is used to derive our version from the standard ones; this reverse derivation is shown as theorem dfac2 8011. Equivalents to AC are the well-ordering theorem weth 8375 and Zorn's lemma zorn 8387. See ac4 8355 for comments about stronger versions of AC. In order to avoid uses of ax-reg 7560 for derivation of AC equivalents, we provide ax-ac2 8343 (due to Kurt Maes), which is equivalent to the standard AC of textbooks. The derivation of ax-ac2 8343 from ax-ac 8339 is shown by theorem axac2 8346, and the reverse derivation by axac 8347. Therefore, new proofs should normally use ax-ac2 8343 instead. (New usage is discouraged.) (Contributed by NM, 18-Jul-1996.)
Assertion
Ref Expression
ax-ac
Distinct variable group:   ,,,,,,

Detailed syntax breakdown of Axiom ax-ac
StepHypRef Expression
1 vz . . . . . . 7
2 vw . . . . . . 7
31, 2wel 1726 . . . . . 6
4 vx . . . . . . 7
52, 4wel 1726 . . . . . 6
63, 5wa 359 . . . . 5
7 vu . . . . . . . . . . . 12
87, 2wel 1726 . . . . . . . . . . 11
9 vt . . . . . . . . . . . 12
102, 9wel 1726 . . . . . . . . . . 11
118, 10wa 359 . . . . . . . . . 10
127, 9wel 1726 . . . . . . . . . . 11
13 vy . . . . . . . . . . . 12
149, 13wel 1726 . . . . . . . . . . 11
1512, 14wa 359 . . . . . . . . . 10
1611, 15wa 359 . . . . . . . . 9
1716, 9wex 1550 . . . . . . . 8
18 vv . . . . . . . . 9
197, 18weq 1653 . . . . . . . 8
2017, 19wb 177 . . . . . . 7
2120, 7wal 1549 . . . . . 6
2221, 18wex 1550 . . . . 5
236, 22wi 4 . . . 4
2423, 2wal 1549 . . 3
2524, 1wal 1549 . 2
2625, 13wex 1550 1
 Colors of variables: wff set class This axiom is referenced by:  zfac  8340  ac2  8341
 Copyright terms: Public domain W3C validator