Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax10 Structured version   Unicode version

Theorem ax10 2025
 Description: Derive set.mm's original ax-10 2217 from others. (Contributed by NM, 25-Jul-2015.) (Revised by NM, 7-Nov-2015.) (Proof shortened by Wolf Lammen, 6-Mar-2018.)
Assertion
Ref Expression
ax10

Proof of Theorem ax10
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 a9ev 1668 . . 3
2 equcomi 1691 . . . . . 6
3 dveeq1 2021 . . . . . 6
42, 3syl5com 28 . . . . 5
5 ax10o2 2024 . . . . . 6
6 ax10lem2 2023 . . . . . 6
75, 6syl6 31 . . . . 5
84, 7syl9 68 . . . 4
98exlimiv 1644 . . 3
101, 9ax-mp 8 . 2
1110pm2.18d 105 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4  wal 1549  wex 1550 This theorem is referenced by:  aecom  2035  aecoms  2036  naecoms  2037  ax10oOLD  2039  sbcom  2164  axi10  2414  2sb5ndVD  29022  e2ebindVD  29024  e2ebindALT  29041  2sb5ndALT  29044 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950 This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1551  df-nf 1554
 Copyright terms: Public domain W3C validator