Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax11a2 Unicode version

Theorem ax11a2 2050
 Description: Derive ax-11o 2195 from a hypothesis in the form of ax-11 1757. ax-10 2194 and ax-11 1757 are used by the proof, but not ax-10o 2193 or ax-11o 2195. TODO: figure out if this is useful, or if it should be simplified or eliminated. (Contributed by NM, 2-Feb-2007.)
Hypothesis
Ref Expression
ax11a2.1
Assertion
Ref Expression
ax11a2
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   (,)

Proof of Theorem ax11a2
StepHypRef Expression
1 ax-17 1623 . . 3
2 ax11a2.1 . . 3
31, 2syl5 30 . 2
43ax11v2 2048 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4  wal 1546 This theorem is referenced by:  ax11o  2051 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946 This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551
 Copyright terms: Public domain W3C validator