MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax11b Unicode version

Theorem ax11b 2078
Description: A bidirectional version of ax11o 2077. (Contributed by NM, 30-Jun-2006.)
Assertion
Ref Expression
ax11b  |-  ( ( -.  A. x  x  =  y  /\  x  =  y )  -> 
( ph  <->  A. x ( x  =  y  ->  ph )
) )

Proof of Theorem ax11b
StepHypRef Expression
1 ax11o 2077 . . 3  |-  ( -. 
A. x  x  =  y  ->  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) ) )
21imp 419 . 2  |-  ( ( -.  A. x  x  =  y  /\  x  =  y )  -> 
( ph  ->  A. x
( x  =  y  ->  ph ) ) )
3 sp 1763 . . . 4  |-  ( A. x ( x  =  y  ->  ph )  -> 
( x  =  y  ->  ph ) )
43com12 29 . . 3  |-  ( x  =  y  ->  ( A. x ( x  =  y  ->  ph )  ->  ph ) )
54adantl 453 . 2  |-  ( ( -.  A. x  x  =  y  /\  x  =  y )  -> 
( A. x ( x  =  y  ->  ph )  ->  ph )
)
62, 5impbid 184 1  |-  ( ( -.  A. x  x  =  y  /\  x  =  y )  -> 
( ph  <->  A. x ( x  =  y  ->  ph )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1549
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554
  Copyright terms: Public domain W3C validator