MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax11eq Unicode version

Theorem ax11eq 2109
Description: Basis step for constructing a substitution instance of ax-11o 1941 without using ax-11o 1941. Atomic formula for equality predicate. (Contributed by NM, 22-Jan-2007.)
Assertion
Ref Expression
ax11eq  |-  ( -. 
A. x  x  =  y  ->  ( x  =  y  ->  ( z  =  w  ->  A. x
( x  =  y  ->  z  =  w ) ) ) )

Proof of Theorem ax11eq
StepHypRef Expression
1 19.26 1592 . . 3  |-  ( A. x ( x  =  z  /\  x  =  w )  <->  ( A. x  x  =  z  /\  A. x  x  =  w ) )
2 equid 1818 . . . . . . . 8  |-  x  =  x
32a1i 12 . . . . . . 7  |-  ( x  =  y  ->  x  =  x )
43ax-gen 1536 . . . . . 6  |-  A. x
( x  =  y  ->  x  =  x )
54a1i 12 . . . . 5  |-  ( x  =  x  ->  A. x
( x  =  y  ->  x  =  x ) )
6 equequ1 1829 . . . . . . . . 9  |-  ( x  =  z  ->  (
x  =  x  <->  z  =  x ) )
7 equequ2 1830 . . . . . . . . 9  |-  ( x  =  w  ->  (
z  =  x  <->  z  =  w ) )
86, 7sylan9bb 683 . . . . . . . 8  |-  ( ( x  =  z  /\  x  =  w )  ->  ( x  =  x  <-> 
z  =  w ) )
98a4s 1700 . . . . . . 7  |-  ( A. x ( x  =  z  /\  x  =  w )  ->  (
x  =  x  <->  z  =  w ) )
10 nfa1 1719 . . . . . . . 8  |-  F/ x A. x ( x  =  z  /\  x  =  w )
119imbi2d 309 . . . . . . . 8  |-  ( A. x ( x  =  z  /\  x  =  w )  ->  (
( x  =  y  ->  x  =  x )  <->  ( x  =  y  ->  z  =  w ) ) )
1210, 11albid 1713 . . . . . . 7  |-  ( A. x ( x  =  z  /\  x  =  w )  ->  ( A. x ( x  =  y  ->  x  =  x )  <->  A. x
( x  =  y  ->  z  =  w ) ) )
139, 12imbi12d 313 . . . . . 6  |-  ( A. x ( x  =  z  /\  x  =  w )  ->  (
( x  =  x  ->  A. x ( x  =  y  ->  x  =  x ) )  <->  ( z  =  w  ->  A. x
( x  =  y  ->  z  =  w ) ) ) )
1413adantr 453 . . . . 5  |-  ( ( A. x ( x  =  z  /\  x  =  w )  /\  ( -.  A. x  x  =  y  /\  x  =  y ) )  -> 
( ( x  =  x  ->  A. x
( x  =  y  ->  x  =  x ) )  <->  ( z  =  w  ->  A. x
( x  =  y  ->  z  =  w ) ) ) )
155, 14mpbii 204 . . . 4  |-  ( ( A. x ( x  =  z  /\  x  =  w )  /\  ( -.  A. x  x  =  y  /\  x  =  y ) )  -> 
( z  =  w  ->  A. x ( x  =  y  ->  z  =  w ) ) )
1615exp32 591 . . 3  |-  ( A. x ( x  =  z  /\  x  =  w )  ->  ( -.  A. x  x  =  y  ->  ( x  =  y  ->  ( z  =  w  ->  A. x
( x  =  y  ->  z  =  w ) ) ) ) )
171, 16sylbir 206 . 2  |-  ( ( A. x  x  =  z  /\  A. x  x  =  w )  ->  ( -.  A. x  x  =  y  ->  ( x  =  y  -> 
( z  =  w  ->  A. x ( x  =  y  ->  z  =  w ) ) ) ) )
18 equequ1 1829 . . . . . . 7  |-  ( x  =  y  ->  (
x  =  w  <->  y  =  w ) )
1918ad2antll 712 . . . . . 6  |-  ( ( -.  A. x  x  =  w  /\  ( -.  A. x  x  =  y  /\  x  =  y ) )  -> 
( x  =  w  <-> 
y  =  w ) )
20 ax-12o 1664 . . . . . . . . 9  |-  ( -. 
A. x  x  =  y  ->  ( -.  A. x  x  =  w  ->  ( y  =  w  ->  A. x  y  =  w )
) )
2120impcom 421 . . . . . . . 8  |-  ( ( -.  A. x  x  =  w  /\  -.  A. x  x  =  y )  ->  ( y  =  w  ->  A. x  y  =  w )
)
2221adantrr 700 . . . . . . 7  |-  ( ( -.  A. x  x  =  w  /\  ( -.  A. x  x  =  y  /\  x  =  y ) )  -> 
( y  =  w  ->  A. x  y  =  w ) )
23 equtrr 1827 . . . . . . . 8  |-  ( y  =  w  ->  (
x  =  y  ->  x  =  w )
)
2423alimi 1546 . . . . . . 7  |-  ( A. x  y  =  w  ->  A. x ( x  =  y  ->  x  =  w ) )
2522, 24syl6 31 . . . . . 6  |-  ( ( -.  A. x  x  =  w  /\  ( -.  A. x  x  =  y  /\  x  =  y ) )  -> 
( y  =  w  ->  A. x ( x  =  y  ->  x  =  w ) ) )
2619, 25sylbid 208 . . . . 5  |-  ( ( -.  A. x  x  =  w  /\  ( -.  A. x  x  =  y  /\  x  =  y ) )  -> 
( x  =  w  ->  A. x ( x  =  y  ->  x  =  w ) ) )
2726adantll 697 . . . 4  |-  ( ( ( A. x  x  =  z  /\  -.  A. x  x  =  w )  /\  ( -. 
A. x  x  =  y  /\  x  =  y ) )  -> 
( x  =  w  ->  A. x ( x  =  y  ->  x  =  w ) ) )
28 equequ1 1829 . . . . . . 7  |-  ( x  =  z  ->  (
x  =  w  <->  z  =  w ) )
2928a4s 1700 . . . . . 6  |-  ( A. x  x  =  z  ->  ( x  =  w  <-> 
z  =  w ) )
3029imbi2d 309 . . . . . . 7  |-  ( A. x  x  =  z  ->  ( ( x  =  y  ->  x  =  w )  <->  ( x  =  y  ->  z  =  w ) ) )
3130dral2-o 1859 . . . . . 6  |-  ( A. x  x  =  z  ->  ( A. x ( x  =  y  ->  x  =  w )  <->  A. x ( x  =  y  ->  z  =  w ) ) )
3229, 31imbi12d 313 . . . . 5  |-  ( A. x  x  =  z  ->  ( ( x  =  w  ->  A. x
( x  =  y  ->  x  =  w ) )  <->  ( z  =  w  ->  A. x
( x  =  y  ->  z  =  w ) ) ) )
3332ad2antrr 709 . . . 4  |-  ( ( ( A. x  x  =  z  /\  -.  A. x  x  =  w )  /\  ( -. 
A. x  x  =  y  /\  x  =  y ) )  -> 
( ( x  =  w  ->  A. x
( x  =  y  ->  x  =  w ) )  <->  ( z  =  w  ->  A. x
( x  =  y  ->  z  =  w ) ) ) )
3427, 33mpbid 203 . . 3  |-  ( ( ( A. x  x  =  z  /\  -.  A. x  x  =  w )  /\  ( -. 
A. x  x  =  y  /\  x  =  y ) )  -> 
( z  =  w  ->  A. x ( x  =  y  ->  z  =  w ) ) )
3534exp32 591 . 2  |-  ( ( A. x  x  =  z  /\  -.  A. x  x  =  w
)  ->  ( -.  A. x  x  =  y  ->  ( x  =  y  ->  ( z  =  w  ->  A. x
( x  =  y  ->  z  =  w ) ) ) ) )
36 equequ2 1830 . . . . . . 7  |-  ( x  =  y  ->  (
z  =  x  <->  z  =  y ) )
3736ad2antll 712 . . . . . 6  |-  ( ( -.  A. x  x  =  z  /\  ( -.  A. x  x  =  y  /\  x  =  y ) )  -> 
( z  =  x  <-> 
z  =  y ) )
38 ax-12o 1664 . . . . . . . . 9  |-  ( -. 
A. x  x  =  z  ->  ( -.  A. x  x  =  y  ->  ( z  =  y  ->  A. x  z  =  y )
) )
3938imp 420 . . . . . . . 8  |-  ( ( -.  A. x  x  =  z  /\  -.  A. x  x  =  y )  ->  ( z  =  y  ->  A. x  z  =  y )
)
4039adantrr 700 . . . . . . 7  |-  ( ( -.  A. x  x  =  z  /\  ( -.  A. x  x  =  y  /\  x  =  y ) )  -> 
( z  =  y  ->  A. x  z  =  y ) )
4136biimprcd 218 . . . . . . . 8  |-  ( z  =  y  ->  (
x  =  y  -> 
z  =  x ) )
4241alimi 1546 . . . . . . 7  |-  ( A. x  z  =  y  ->  A. x ( x  =  y  ->  z  =  x ) )
4340, 42syl6 31 . . . . . 6  |-  ( ( -.  A. x  x  =  z  /\  ( -.  A. x  x  =  y  /\  x  =  y ) )  -> 
( z  =  y  ->  A. x ( x  =  y  ->  z  =  x ) ) )
4437, 43sylbid 208 . . . . 5  |-  ( ( -.  A. x  x  =  z  /\  ( -.  A. x  x  =  y  /\  x  =  y ) )  -> 
( z  =  x  ->  A. x ( x  =  y  ->  z  =  x ) ) )
4544adantlr 698 . . . 4  |-  ( ( ( -.  A. x  x  =  z  /\  A. x  x  =  w )  /\  ( -. 
A. x  x  =  y  /\  x  =  y ) )  -> 
( z  =  x  ->  A. x ( x  =  y  ->  z  =  x ) ) )
467a4s 1700 . . . . . 6  |-  ( A. x  x  =  w  ->  ( z  =  x  <-> 
z  =  w ) )
4746imbi2d 309 . . . . . . 7  |-  ( A. x  x  =  w  ->  ( ( x  =  y  ->  z  =  x )  <->  ( x  =  y  ->  z  =  w ) ) )
4847dral2-o 1859 . . . . . 6  |-  ( A. x  x  =  w  ->  ( A. x ( x  =  y  -> 
z  =  x )  <->  A. x ( x  =  y  ->  z  =  w ) ) )
4946, 48imbi12d 313 . . . . 5  |-  ( A. x  x  =  w  ->  ( ( z  =  x  ->  A. x
( x  =  y  ->  z  =  x ) )  <->  ( z  =  w  ->  A. x
( x  =  y  ->  z  =  w ) ) ) )
5049ad2antlr 710 . . . 4  |-  ( ( ( -.  A. x  x  =  z  /\  A. x  x  =  w )  /\  ( -. 
A. x  x  =  y  /\  x  =  y ) )  -> 
( ( z  =  x  ->  A. x
( x  =  y  ->  z  =  x ) )  <->  ( z  =  w  ->  A. x
( x  =  y  ->  z  =  w ) ) ) )
5145, 50mpbid 203 . . 3  |-  ( ( ( -.  A. x  x  =  z  /\  A. x  x  =  w )  /\  ( -. 
A. x  x  =  y  /\  x  =  y ) )  -> 
( z  =  w  ->  A. x ( x  =  y  ->  z  =  w ) ) )
5251exp32 591 . 2  |-  ( ( -.  A. x  x  =  z  /\  A. x  x  =  w
)  ->  ( -.  A. x  x  =  y  ->  ( x  =  y  ->  ( z  =  w  ->  A. x
( x  =  y  ->  z  =  w ) ) ) ) )
53 a9e 1817 . . . . 5  |-  E. u  u  =  w
54 a9e 1817 . . . . . . 7  |-  E. v 
v  =  z
55 ax-1 7 . . . . . . . . . . 11  |-  ( v  =  u  ->  (
x  =  y  -> 
v  =  u ) )
5655alrimiv 2013 . . . . . . . . . 10  |-  ( v  =  u  ->  A. x
( x  =  y  ->  v  =  u ) )
57 equequ1 1829 . . . . . . . . . . . . 13  |-  ( v  =  z  ->  (
v  =  u  <->  z  =  u ) )
58 equequ2 1830 . . . . . . . . . . . . 13  |-  ( u  =  w  ->  (
z  =  u  <->  z  =  w ) )
5957, 58sylan9bb 683 . . . . . . . . . . . 12  |-  ( ( v  =  z  /\  u  =  w )  ->  ( v  =  u  <-> 
z  =  w ) )
6059adantl 454 . . . . . . . . . . 11  |-  ( ( ( -.  A. x  x  =  z  /\  -.  A. x  x  =  w )  /\  (
v  =  z  /\  u  =  w )
)  ->  ( v  =  u  <->  z  =  w ) )
61 dveeq2-o 1930 . . . . . . . . . . . . . . 15  |-  ( -. 
A. x  x  =  z  ->  ( v  =  z  ->  A. x  v  =  z )
)
62 dveeq2-o 1930 . . . . . . . . . . . . . . 15  |-  ( -. 
A. x  x  =  w  ->  ( u  =  w  ->  A. x  u  =  w )
)
6361, 62im2anan9 811 . . . . . . . . . . . . . 14  |-  ( ( -.  A. x  x  =  z  /\  -.  A. x  x  =  w )  ->  ( (
v  =  z  /\  u  =  w )  ->  ( A. x  v  =  z  /\  A. x  u  =  w
) ) )
6463imp 420 . . . . . . . . . . . . 13  |-  ( ( ( -.  A. x  x  =  z  /\  -.  A. x  x  =  w )  /\  (
v  =  z  /\  u  =  w )
)  ->  ( A. x  v  =  z  /\  A. x  u  =  w ) )
65 19.26 1592 . . . . . . . . . . . . 13  |-  ( A. x ( v  =  z  /\  u  =  w )  <->  ( A. x  v  =  z  /\  A. x  u  =  w ) )
6664, 65sylibr 205 . . . . . . . . . . . 12  |-  ( ( ( -.  A. x  x  =  z  /\  -.  A. x  x  =  w )  /\  (
v  =  z  /\  u  =  w )
)  ->  A. x
( v  =  z  /\  u  =  w ) )
67 nfa1 1719 . . . . . . . . . . . . 13  |-  F/ x A. x ( v  =  z  /\  u  =  w )
6859a4s 1700 . . . . . . . . . . . . . 14  |-  ( A. x ( v  =  z  /\  u  =  w )  ->  (
v  =  u  <->  z  =  w ) )
6968imbi2d 309 . . . . . . . . . . . . 13  |-  ( A. x ( v  =  z  /\  u  =  w )  ->  (
( x  =  y  ->  v  =  u )  <->  ( x  =  y  ->  z  =  w ) ) )
7067, 69albid 1713 . . . . . . . . . . . 12  |-  ( A. x ( v  =  z  /\  u  =  w )  ->  ( A. x ( x  =  y  ->  v  =  u )  <->  A. x
( x  =  y  ->  z  =  w ) ) )
7166, 70syl 17 . . . . . . . . . . 11  |-  ( ( ( -.  A. x  x  =  z  /\  -.  A. x  x  =  w )  /\  (
v  =  z  /\  u  =  w )
)  ->  ( A. x ( x  =  y  ->  v  =  u )  <->  A. x
( x  =  y  ->  z  =  w ) ) )
7260, 71imbi12d 313 . . . . . . . . . 10  |-  ( ( ( -.  A. x  x  =  z  /\  -.  A. x  x  =  w )  /\  (
v  =  z  /\  u  =  w )
)  ->  ( (
v  =  u  ->  A. x ( x  =  y  ->  v  =  u ) )  <->  ( z  =  w  ->  A. x
( x  =  y  ->  z  =  w ) ) ) )
7356, 72mpbii 204 . . . . . . . . 9  |-  ( ( ( -.  A. x  x  =  z  /\  -.  A. x  x  =  w )  /\  (
v  =  z  /\  u  =  w )
)  ->  ( z  =  w  ->  A. x
( x  =  y  ->  z  =  w ) ) )
7473exp32 591 . . . . . . . 8  |-  ( ( -.  A. x  x  =  z  /\  -.  A. x  x  =  w )  ->  ( v  =  z  ->  ( u  =  w  ->  (
z  =  w  ->  A. x ( x  =  y  ->  z  =  w ) ) ) ) )
7574exlimdv 1933 . . . . . . 7  |-  ( ( -.  A. x  x  =  z  /\  -.  A. x  x  =  w )  ->  ( E. v  v  =  z  ->  ( u  =  w  ->  ( z  =  w  ->  A. x
( x  =  y  ->  z  =  w ) ) ) ) )
7654, 75mpi 18 . . . . . 6  |-  ( ( -.  A. x  x  =  z  /\  -.  A. x  x  =  w )  ->  ( u  =  w  ->  ( z  =  w  ->  A. x
( x  =  y  ->  z  =  w ) ) ) )
7776exlimdv 1933 . . . . 5  |-  ( ( -.  A. x  x  =  z  /\  -.  A. x  x  =  w )  ->  ( E. u  u  =  w  ->  ( z  =  w  ->  A. x ( x  =  y  ->  z  =  w ) ) ) )
7853, 77mpi 18 . . . 4  |-  ( ( -.  A. x  x  =  z  /\  -.  A. x  x  =  w )  ->  ( z  =  w  ->  A. x
( x  =  y  ->  z  =  w ) ) )
7978a1d 24 . . 3  |-  ( ( -.  A. x  x  =  z  /\  -.  A. x  x  =  w )  ->  ( x  =  y  ->  ( z  =  w  ->  A. x
( x  =  y  ->  z  =  w ) ) ) )
8079a1d 24 . 2  |-  ( ( -.  A. x  x  =  z  /\  -.  A. x  x  =  w )  ->  ( -.  A. x  x  =  y  ->  ( x  =  y  ->  ( z  =  w  ->  A. x
( x  =  y  ->  z  =  w ) ) ) ) )
8117, 35, 52, 804cases 920 1  |-  ( -. 
A. x  x  =  y  ->  ( x  =  y  ->  ( z  =  w  ->  A. x
( x  =  y  ->  z  =  w ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1532   E.wex 1537    = wceq 1619
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-17 1628  ax-12o 1664  ax-9 1684  ax-4 1692  ax-10o 1836
This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1538  df-nf 1540
  Copyright terms: Public domain W3C validator