Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax11indn Structured version   Unicode version

Theorem ax11indn 2278
 Description: Induction step for constructing a substitution instance of ax-11o 2224 without using ax-11o 2224. Negation case. (Contributed by NM, 21-Jan-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
ax11indn.1
Assertion
Ref Expression
ax11indn

Proof of Theorem ax11indn
StepHypRef Expression
1 19.8a 1764 . . 3
2 exanali 1596 . . . 4
3 hbn1 1747 . . . . 5
4 hbn1 1747 . . . . 5
5 ax11indn.1 . . . . . . 7
6 con3 129 . . . . . . 7
75, 6syl6 32 . . . . . 6
87com23 75 . . . . 5
93, 4, 8alrimdh 1598 . . . 4
102, 9syl5bi 210 . . 3
111, 10syl5 31 . 2
1211exp3a 427 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 360  wal 1550  wex 1551 This theorem is referenced by:  ax11indi  2279 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-6 1746  ax-11 1763 This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552
 Copyright terms: Public domain W3C validator