Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax11o Structured version   Unicode version

Theorem ax11o 2077
 Description: Derivation of set.mm's original ax-11o 2217 from ax-10 2216 and the shorter ax-11 1761 that has replaced it. Theorem ax11 2231 shows the reverse derivation of ax-11 1761 from ax-11o 2217. Normally, ax11o 2077 should be used rather than ax-11o 2217, except by theorems specifically studying the latter's properties. (Contributed by NM, 3-Feb-2007.)
Assertion
Ref Expression
ax11o

Proof of Theorem ax11o
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ax-11 1761 . 2
21ax11a2 2076 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4  wal 1549 This theorem is referenced by:  ax11b  2078  equs5  2085  ax11v  2171 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950 This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554
 Copyright terms: Public domain W3C validator