Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax11v Unicode version

Theorem ax11v 2145
 Description: This is a version of ax-11o 2191 when the variables are distinct. Axiom (C8) of [Monk2] p. 105. See theorem ax11v2 2045 for the rederivation of ax-11o 2191 from this theorem. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
ax11v
Distinct variable group:   ,
Allowed substitution hints:   (,)

Proof of Theorem ax11v
StepHypRef Expression
1 ax-1 5 . . . 4
2 ax16 2094 . . . 4
31, 2syl5 30 . . 3
43a1d 23 . 2
5 ax11o 2047 . 2
64, 5pm2.61i 158 1
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1546 This theorem is referenced by:  sb56  2147  exsb  2180  rexsb  27813 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946 This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551
 Copyright terms: Public domain W3C validator