Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax11v Unicode version

Theorem ax11v 2036
 Description: This is a version of ax-11o 2083 when the variables are distinct. Axiom (C8) of [Monk2] p. 105. See theorem ax11v2 1935 for the rederivation of ax-11o 2083 from this theorem. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
ax11v
Distinct variable group:   ,
Allowed substitution hints:   (,)

Proof of Theorem ax11v
StepHypRef Expression
1 ax-1 5 . . . 4
2 ax16 1990 . . . 4
31, 2syl5 28 . . 3
43a1d 22 . 2
5 ax11o 1937 . 2
64, 5pm2.61i 156 1
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1527 This theorem is referenced by:  sb56  2037  exsb  2072  rexsb  27337 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868 This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631
 Copyright terms: Public domain W3C validator