MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax12 Unicode version

Theorem ax12 2095
Description: Derive ax-12 1866 from ax-12o 2081 and other older axioms.

This proof uses newer axioms ax-5 1544 and ax-9 1635, but since these are proved from the older axioms above, this is acceptable and lets us avoid having to reprove several earlier theorems to use ax-5o 2075 and ax-9o 2077. (Contributed by NM, 21-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.)

Assertion
Ref Expression
ax12  |-  ( -.  x  =  y  -> 
( y  =  z  ->  A. x  y  =  z ) )

Proof of Theorem ax12
StepHypRef Expression
1 ax-4 2074 . . . . . 6  |-  ( A. x  x  =  y  ->  x  =  y )
21con3i 127 . . . . 5  |-  ( -.  x  =  y  ->  -.  A. x  x  =  y )
32adantr 451 . . . 4  |-  ( ( -.  x  =  y  /\  y  =  z )  ->  -.  A. x  x  =  y )
4 equtrr 1653 . . . . . . . 8  |-  ( z  =  y  ->  (
x  =  z  ->  x  =  y )
)
54equcoms 1651 . . . . . . 7  |-  ( y  =  z  ->  (
x  =  z  ->  x  =  y )
)
65con3rr3 128 . . . . . 6  |-  ( -.  x  =  y  -> 
( y  =  z  ->  -.  x  =  z ) )
76imp 418 . . . . 5  |-  ( ( -.  x  =  y  /\  y  =  z )  ->  -.  x  =  z )
8 ax-4 2074 . . . . 5  |-  ( A. x  x  =  z  ->  x  =  z )
97, 8nsyl 113 . . . 4  |-  ( ( -.  x  =  y  /\  y  =  z )  ->  -.  A. x  x  =  z )
10 ax-12o 2081 . . . 4  |-  ( -. 
A. x  x  =  y  ->  ( -.  A. x  x  =  z  ->  ( y  =  z  ->  A. x  y  =  z )
) )
113, 9, 10sylc 56 . . 3  |-  ( ( -.  x  =  y  /\  y  =  z )  ->  ( y  =  z  ->  A. x  y  =  z )
)
1211ex 423 . 2  |-  ( -.  x  =  y  -> 
( y  =  z  ->  ( y  =  z  ->  A. x  y  =  z )
) )
1312pm2.43d 44 1  |-  ( -.  x  =  y  -> 
( y  =  z  ->  A. x  y  =  z ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358   A.wal 1527
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-4 2074  ax-12o 2081
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator