Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax12o Unicode version

Theorem ax12o 1877
 Description: Derive set.mm's original ax-12o 2084 from the shorter ax-12 1868. (Contributed by NM, 29-Nov-2015.) (Revised by NM, 24-Dec-2015.)
Assertion
Ref Expression
ax12o

Proof of Theorem ax12o
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax12v 1869 . . 3
2 ax12v 1869 . . 3
31, 2ax12olem4 1873 . 2
4 ax12v 1869 . . 3
5 ax12v 1869 . . 3
64, 5ax12olem4 1873 . 2
73, 6ax12olem7 1876 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4  wal 1527 This theorem is referenced by:  dvelimv  1881  hbae  1895  nfeqf  1901  dvelimfALT  1907  dvelimf  1941  dvelimALT  2075  ax11eq  2133  ax11indalem  2137  axext4dist  23561  ax12-2  28382  ax12-4  28385  ax10lem17ALT  28402  a12stdy4  28408  a12lem1  28409  ax9lem17  28435 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868 This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529
 Copyright terms: Public domain W3C validator