MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax15 Unicode version

Theorem ax15 2101
Description: Axiom ax-15 2219 is redundant if we assume ax-17 1626. Remark 9.6 in [Megill] p. 448 (p. 16 of the preprint), regarding axiom scheme C14'.

Note that  w is a dummy variable introduced in the proof. On the web page, it is implicitly assumed to be distinct from all other variables. (This is made explicit in the database file set.mm). Its purpose is to satisfy the distinct variable requirements of dveel2 2100 and ax-17 1626. By the end of the proof it has vanished, and the final theorem has no distinct variable requirements. (Contributed by NM, 29-Jun-1995.) (Proof modification is discouraged.)

Assertion
Ref Expression
ax15  |-  ( -. 
A. z  z  =  x  ->  ( -.  A. z  z  =  y  ->  ( x  e.  y  ->  A. z  x  e.  y )
) )

Proof of Theorem ax15
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 hbn1 1745 . . . . 5  |-  ( -. 
A. z  z  =  y  ->  A. z  -.  A. z  z  =  y )
2 dveel2 2100 . . . . 5  |-  ( -. 
A. z  z  =  y  ->  ( w  e.  y  ->  A. z  w  e.  y )
)
31, 2hbim1 1829 . . . 4  |-  ( ( -.  A. z  z  =  y  ->  w  e.  y )  ->  A. z
( -.  A. z 
z  =  y  ->  w  e.  y )
)
4 elequ1 1728 . . . . 5  |-  ( w  =  x  ->  (
w  e.  y  <->  x  e.  y ) )
54imbi2d 308 . . . 4  |-  ( w  =  x  ->  (
( -.  A. z 
z  =  y  ->  w  e.  y )  <->  ( -.  A. z  z  =  y  ->  x  e.  y ) ) )
63, 5dvelim 2069 . . 3  |-  ( -. 
A. z  z  =  x  ->  ( ( -.  A. z  z  =  y  ->  x  e.  y )  ->  A. z
( -.  A. z 
z  =  y  ->  x  e.  y )
) )
7 nfa1 1806 . . . . 5  |-  F/ z A. z  z  =  y
87nfn 1811 . . . 4  |-  F/ z  -.  A. z  z  =  y
9819.21 1814 . . 3  |-  ( A. z ( -.  A. z  z  =  y  ->  x  e.  y )  <-> 
( -.  A. z 
z  =  y  ->  A. z  x  e.  y ) )
106, 9syl6ib 218 . 2  |-  ( -. 
A. z  z  =  x  ->  ( ( -.  A. z  z  =  y  ->  x  e.  y )  ->  ( -.  A. z  z  =  y  ->  A. z  x  e.  y )
) )
1110pm2.86d 95 1  |-  ( -. 
A. z  z  =  x  ->  ( -.  A. z  z  =  y  ->  ( x  e.  y  ->  A. z  x  e.  y )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1549
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554
  Copyright terms: Public domain W3C validator