Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax15 Structured version   Unicode version

Theorem ax15 2111
 Description: Axiom ax-15 2226 is redundant if we assume ax-17 1627. Remark 9.6 in [Megill] p. 448 (p. 16 of the preprint), regarding axiom scheme C14'. Note that is a dummy variable introduced in the proof. On the web page, it is implicitly assumed to be distinct from all other variables. (This is made explicit in the database file set.mm). Its purpose is to satisfy the distinct variable requirements of dveel2 2110 and ax-17 1627. By the end of the proof it has vanished, and the final theorem has no distinct variable requirements. (Contributed by NM, 29-Jun-1995.) (Proof modification is discouraged.)
Assertion
Ref Expression
ax15

Proof of Theorem ax15
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 hbn1 1747 . . . . 5
2 dveel2 2110 . . . . 5
31, 2hbim1 1831 . . . 4
4 elequ1 1730 . . . . 5
54imbi2d 309 . . . 4
63, 5dvelim 2076 . . 3
7 nfa1 1808 . . . . 5
87nfn 1813 . . . 4
9819.21 1816 . . 3
106, 9syl6ib 219 . 2
1110pm2.86d 96 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4  wal 1550 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953 This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555
 Copyright terms: Public domain W3C validator