MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax1cn Structured version   Unicode version

Theorem ax1cn 9024
Description: 1 is a complex number. Axiom 2 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1cn 9048. (Contributed by NM, 12-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
ax1cn  |-  1  e.  CC

Proof of Theorem ax1cn
StepHypRef Expression
1 axresscn 9023 . 2  |-  RR  C_  CC
2 df-1 8998 . . 3  |-  1  =  <. 1R ,  0R >.
3 1sr 8956 . . . 4  |-  1R  e.  R.
4 opelreal 9005 . . . 4  |-  ( <. 1R ,  0R >.  e.  RR  <->  1R  e.  R. )
53, 4mpbir 201 . . 3  |-  <. 1R ,  0R >.  e.  RR
62, 5eqeltri 2506 . 2  |-  1  e.  RR
71, 6sselii 3345 1  |-  1  e.  CC
Colors of variables: wff set class
Syntax hints:    e. wcel 1725   <.cop 3817   R.cnr 8742   0Rc0r 8743   1Rc1r 8744   CCcc 8988   RRcr 8989   1c1 8991
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-omul 6729  df-er 6905  df-ec 6907  df-qs 6911  df-ni 8749  df-pli 8750  df-mi 8751  df-lti 8752  df-plpq 8785  df-mpq 8786  df-ltpq 8787  df-enq 8788  df-nq 8789  df-erq 8790  df-plq 8791  df-mq 8792  df-1nq 8793  df-rq 8794  df-ltnq 8795  df-np 8858  df-1p 8859  df-plp 8860  df-enr 8934  df-nr 8935  df-0r 8939  df-1r 8940  df-c 8996  df-1 8998  df-r 9000
  Copyright terms: Public domain W3C validator