MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax4 Unicode version

Theorem ax4 1720
Description: This theorem repeats sp 1719 under the name ax4 1720, so that the metamath program's "verify markup" command will check that it matches axiom scheme ax-4 2079. It is preferred that references to this theorem use the name sp 1719. (Contributed by NM, 18-Aug-2017.) (New usage is discouraged.)
Assertion
Ref Expression
ax4  |-  ( A. x ph  ->  ph )

Proof of Theorem ax4
StepHypRef Expression
1 sp 1719 1  |-  ( A. x ph  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 6   A.wal 1529
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1638  ax-8 1646  ax-11 1718
  Copyright terms: Public domain W3C validator