MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax4 Unicode version

Theorem ax4 2097
Description: This theorem repeats sp 1728 under the name ax4 2097, so that the metamath program's "verify markup" command will check that it matches axiom scheme ax-4 2087. It is preferred that references to this theorem use the name sp 1728. (Contributed by NM, 18-Aug-2017.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
ax4  |-  ( A. x ph  ->  ph )

Proof of Theorem ax4
StepHypRef Expression
1 sp 1728 1  |-  ( A. x ph  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1530
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-11 1727
  Copyright terms: Public domain W3C validator