Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax7wK Unicode version

Theorem ax7wK 28148
Description: Weak version of ax-7 1535 from which we can prove any ax-7 1535 instance not involving wff variables or bundling. Uses only Tarski's FOL axiom schemes (see description for equidK 28115). Unlike ax-7 1535, this theorem requires that  x and  y be distinct i.e. are not bundled. See the description in the comment of equidK 28115. (Contributed by NM, 10-Apr-2017.)
Hypothesis
Ref Expression
ax7wK.1  |-  ( y  =  z  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ax7wK  |-  ( A. x A. y ph  ->  A. y A. x ph )
Distinct variable groups:    y, z    x, y    ph, z    ps, y
Allowed substitution hints:    ph( x, y)    ps( x, z)

Proof of Theorem ax7wK
StepHypRef Expression
1 ax7wK.1 . . . . 5  |-  ( y  =  z  ->  ( ph 
<->  ps ) )
21biimpd 200 . . . 4  |-  ( y  =  z  ->  ( ph  ->  ps ) )
32cbvalivK 28140 . . 3  |-  ( A. y ph  ->  A. z ps )
43alimiK 28121 . 2  |-  ( A. x A. y ph  ->  A. x A. z ps )
5 ax-17 1628 . 2  |-  ( A. x A. z ps  ->  A. y A. x A. z ps )
6 equcomiK 28116 . . . . . 6  |-  ( z  =  y  ->  y  =  z )
71biimprd 216 . . . . . 6  |-  ( y  =  z  ->  ( ps  ->  ph ) )
86, 7syl 17 . . . . 5  |-  ( z  =  y  ->  ( ps  ->  ph ) )
98a4imvK 28130 . . . 4  |-  ( A. z ps  ->  ph )
109alimiK 28121 . . 3  |-  ( A. x A. z ps  ->  A. x ph )
1110alimiK 28121 . 2  |-  ( A. y A. x A. z ps  ->  A. y A. x ph )
124, 5, 113syl 20 1  |-  ( A. x A. y ph  ->  A. y A. x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178   A.wal 1532    = wceq 1619
This theorem is referenced by:  hbalwK  28149
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-gen 1536  ax-8 1623  ax-17 1628  ax-9v 1632
This theorem depends on definitions:  df-bi 179
  Copyright terms: Public domain W3C validator