Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax9o Structured version   Unicode version

Theorem ax9o 1955
 Description: Show that the original axiom ax-9o 2217 can be derived from ax9 1954 and others. See ax9from9o 2227 for the rederivation of ax9 1954 from ax-9o 2217. Normally, ax9o 1955 should be used rather than ax-9o 2217, except by theorems specifically studying the latter's properties. (Contributed by NM, 5-Aug-1993.) (Proof modification is discouraged.)
Assertion
Ref Expression
ax9o

Proof of Theorem ax9o
StepHypRef Expression
1 ax9 1954 . . 3
2 con3 129 . . . 4
32al2imi 1571 . . 3
41, 3mtoi 172 . 2
5 ax6o 1767 . 2
64, 5syl 16 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4  wal 1550 This theorem is referenced by:  spimtOLD  1957  cbv1hOLD  1976  equsalOLD  2001 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-11 1762  ax-12 1951 This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552
 Copyright terms: Public domain W3C validator