Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax9o Unicode version

Theorem ax9o 1814
 Description: Show that the original axiom ax-9o 1815 can be derived from ax-9 1684 and others. See ax9from9o 1816 for the rederivation of ax-9 1684 from ax-9o 1815. Normally, ax9o 1814 should be used rather than ax-9o 1815, except by theorems specifically studying the latter's properties. (Contributed by NM, 5-Aug-1993.) (Proof modification is discouraged.)
Assertion
Ref Expression
ax9o

Proof of Theorem ax9o
StepHypRef Expression
1 ax-9 1684 . . 3
2 con3 128 . . . 4
32al2imi 1549 . . 3
41, 3mtoi 171 . 2
5 ax-4 1692 . . 3
6 ax-6 1534 . . 3
75, 6nsyl4 136 . 2
84, 7syl 17 1
 Colors of variables: wff set class Syntax hints:   wn 5   wi 6  wal 1532 This theorem is referenced by:  equsal  1851  equsalh  1852  a4imt  1867  cbv1h  1871 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-gen 1536  ax-9 1684  ax-4 1692
 Copyright terms: Public domain W3C validator