MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axaddf Unicode version

Theorem axaddf 8721
Description: Addition is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axaddcl 8727. This construction-dependent theorem should not be referenced directly; instead, use ax-addf 8770. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.)
Assertion
Ref Expression
axaddf  |-  +  :
( CC  X.  CC )
--> CC

Proof of Theorem axaddf
StepHypRef Expression
1 moeq 2909 . . . . . . . . 9  |-  E* z 
z  =  <. (
w  +R  u ) ,  ( v  +R  f ) >.
21mosubop 4223 . . . . . . . 8  |-  E* z E. u E. f ( y  =  <. u ,  f >.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. )
32mosubop 4223 . . . . . . 7  |-  E* z E. w E. v ( x  =  <. w ,  v >.  /\  E. u E. f ( y  =  <. u ,  f
>.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
)
4 anass 633 . . . . . . . . . . 11  |-  ( ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. )  <->  ( x  = 
<. w ,  v >.  /\  ( y  =  <. u ,  f >.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. ) ) )
542exbii 1581 . . . . . . . . . 10  |-  ( E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. )  <->  E. u E. f
( x  =  <. w ,  v >.  /\  (
y  =  <. u ,  f >.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. ) ) )
6 19.42vv 2041 . . . . . . . . . 10  |-  ( E. u E. f ( x  =  <. w ,  v >.  /\  (
y  =  <. u ,  f >.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. ) )  <->  ( x  =  <. w ,  v
>.  /\  E. u E. f ( y  = 
<. u ,  f >.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) )
75, 6bitri 242 . . . . . . . . 9  |-  ( E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. )  <->  ( x  = 
<. w ,  v >.  /\  E. u E. f
( y  =  <. u ,  f >.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. ) ) )
872exbii 1581 . . . . . . . 8  |-  ( E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. )  <->  E. w E. v
( x  =  <. w ,  v >.  /\  E. u E. f ( y  =  <. u ,  f
>.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) )
98mobii 2152 . . . . . . 7  |-  ( E* z E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )  <->  E* z E. w E. v ( x  = 
<. w ,  v >.  /\  E. u E. f
( y  =  <. u ,  f >.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. ) ) )
103, 9mpbir 202 . . . . . 6  |-  E* z E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. )
1110moani 2168 . . . . 5  |-  E* z
( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
)
1211funoprab 5864 . . . 4  |-  Fun  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }
13 df-plus 8702 . . . . 5  |-  +  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }
1413funeqi 5200 . . . 4  |-  ( Fun 
+  <->  Fun  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. ) ) } )
1512, 14mpbir 202 . . 3  |-  Fun  +
1613dmeqi 4854 . . . . 5  |-  dom  +  =  dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. ) ) }
17 dmoprabss 5849 . . . . 5  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }  C_  ( CC  X.  CC )
1816, 17eqsstri 3169 . . . 4  |-  dom  +  C_  ( CC  X.  CC )
19 0ncn 8709 . . . . 5  |-  -.  (/)  e.  CC
20 df-c 8697 . . . . . . 7  |-  CC  =  ( R.  X.  R. )
21 oveq1 5785 . . . . . . . 8  |-  ( <.
z ,  w >.  =  x  ->  ( <. z ,  w >.  +  <. v ,  u >. )  =  ( x  +  <. v ,  u >. ) )
2221eleq1d 2322 . . . . . . 7  |-  ( <.
z ,  w >.  =  x  ->  ( ( <. z ,  w >.  + 
<. v ,  u >. )  e.  ( R.  X.  R. )  <->  ( x  +  <. v ,  u >. )  e.  ( R.  X.  R. ) ) )
23 oveq2 5786 . . . . . . . 8  |-  ( <.
v ,  u >.  =  y  ->  ( x  +  <. v ,  u >. )  =  ( x  +  y ) )
2423eleq1d 2322 . . . . . . 7  |-  ( <.
v ,  u >.  =  y  ->  ( (
x  +  <. v ,  u >. )  e.  ( R.  X.  R. )  <->  ( x  +  y )  e.  ( R.  X.  R. ) ) )
25 addcnsr 8711 . . . . . . . 8  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( <. z ,  w >.  +  <. v ,  u >. )  =  <. ( z  +R  v ) ,  ( w  +R  u )
>. )
26 addclsr 8659 . . . . . . . . . . 11  |-  ( ( z  e.  R.  /\  v  e.  R. )  ->  ( z  +R  v
)  e.  R. )
27 addclsr 8659 . . . . . . . . . . 11  |-  ( ( w  e.  R.  /\  u  e.  R. )  ->  ( w  +R  u
)  e.  R. )
2826, 27anim12i 551 . . . . . . . . . 10  |-  ( ( ( z  e.  R.  /\  v  e.  R. )  /\  ( w  e.  R.  /\  u  e.  R. )
)  ->  ( (
z  +R  v )  e.  R.  /\  (
w  +R  u )  e.  R. ) )
2928an4s 802 . . . . . . . . 9  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
z  +R  v )  e.  R.  /\  (
w  +R  u )  e.  R. ) )
30 opelxpi 4695 . . . . . . . . 9  |-  ( ( ( z  +R  v
)  e.  R.  /\  ( w  +R  u
)  e.  R. )  -> 
<. ( z  +R  v
) ,  ( w  +R  u ) >.  e.  ( R.  X.  R. ) )
3129, 30syl 17 . . . . . . . 8  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  <. ( z  +R  v ) ,  ( w  +R  u
) >.  e.  ( R. 
X.  R. ) )
3225, 31eqeltrd 2330 . . . . . . 7  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( <. z ,  w >.  +  <. v ,  u >. )  e.  ( R.  X.  R. ) )
3320, 22, 24, 322optocl 4739 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  ( R. 
X.  R. ) )
3433, 20syl6eleqr 2347 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
3519, 34oprssdm 5922 . . . 4  |-  ( CC 
X.  CC )  C_  dom  +
3618, 35eqssi 3156 . . 3  |-  dom  +  =  ( CC  X.  CC )
37 df-fn 4670 . . 3  |-  (  +  Fn  ( CC  X.  CC )  <->  ( Fun  +  /\  dom  +  =  ( CC  X.  CC ) ) )
3815, 36, 37mpbir2an 891 . 2  |-  +  Fn  ( CC  X.  CC )
3934rgen2a 2582 . 2  |-  A. x  e.  CC  A. y  e.  CC  ( x  +  y )  e.  CC
40 ffnov 5868 . 2  |-  (  +  : ( CC  X.  CC ) --> CC  <->  (  +  Fn  ( CC  X.  CC )  /\  A. x  e.  CC  A. y  e.  CC  ( x  +  y )  e.  CC ) )
4138, 39, 40mpbir2an 891 1  |-  +  :
( CC  X.  CC )
--> CC
Colors of variables: wff set class
Syntax hints:    /\ wa 360   E.wex 1537    = wceq 1619    e. wcel 1621   E*wmo 2118   A.wral 2516   <.cop 3603    X. cxp 4645   dom cdm 4647   Fun wfun 4653    Fn wfn 4654   -->wf 4655  (class class class)co 5778   {coprab 5779   R.cnr 8443    +R cplr 8447   CCcc 8689    + caddc 8694
This theorem is referenced by:  axaddcl  8727
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470  ax-inf2 7296
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-reu 2523  df-rmo 2524  df-rab 2525  df-v 2759  df-sbc 2953  df-csb 3043  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-int 3823  df-iun 3867  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-we 4312  df-ord 4353  df-on 4354  df-lim 4355  df-suc 4356  df-om 4615  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-1st 6042  df-2nd 6043  df-recs 6342  df-rdg 6377  df-1o 6433  df-oadd 6437  df-omul 6438  df-er 6614  df-ec 6616  df-qs 6620  df-ni 8450  df-pli 8451  df-mi 8452  df-lti 8453  df-plpq 8486  df-mpq 8487  df-ltpq 8488  df-enq 8489  df-nq 8490  df-erq 8491  df-plq 8492  df-mq 8493  df-1nq 8494  df-rq 8495  df-ltnq 8496  df-np 8559  df-plp 8561  df-ltp 8563  df-plpr 8633  df-enr 8635  df-nr 8636  df-plr 8637  df-c 8697  df-plus 8702
  Copyright terms: Public domain W3C validator