MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axaddf Structured version   Unicode version

Theorem axaddf 9022
Description: Addition is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axaddcl 9028. This construction-dependent theorem should not be referenced directly; instead, use ax-addf 9071. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.)
Assertion
Ref Expression
axaddf  |-  +  :
( CC  X.  CC )
--> CC

Proof of Theorem axaddf
Dummy variables  x  y  z  w  v  u  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 moeq 3112 . . . . . . . . 9  |-  E* z 
z  =  <. (
w  +R  u ) ,  ( v  +R  f ) >.
21mosubop 4457 . . . . . . . 8  |-  E* z E. u E. f ( y  =  <. u ,  f >.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. )
32mosubop 4457 . . . . . . 7  |-  E* z E. w E. v ( x  =  <. w ,  v >.  /\  E. u E. f ( y  =  <. u ,  f
>.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
)
4 anass 632 . . . . . . . . . . 11  |-  ( ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. )  <->  ( x  = 
<. w ,  v >.  /\  ( y  =  <. u ,  f >.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. ) ) )
542exbii 1594 . . . . . . . . . 10  |-  ( E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. )  <->  E. u E. f
( x  =  <. w ,  v >.  /\  (
y  =  <. u ,  f >.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. ) ) )
6 19.42vv 1931 . . . . . . . . . 10  |-  ( E. u E. f ( x  =  <. w ,  v >.  /\  (
y  =  <. u ,  f >.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. ) )  <->  ( x  =  <. w ,  v
>.  /\  E. u E. f ( y  = 
<. u ,  f >.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) )
75, 6bitri 242 . . . . . . . . 9  |-  ( E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. )  <->  ( x  = 
<. w ,  v >.  /\  E. u E. f
( y  =  <. u ,  f >.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. ) ) )
872exbii 1594 . . . . . . . 8  |-  ( E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. )  <->  E. w E. v
( x  =  <. w ,  v >.  /\  E. u E. f ( y  =  <. u ,  f
>.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) )
98mobii 2319 . . . . . . 7  |-  ( E* z E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )  <->  E* z E. w E. v ( x  = 
<. w ,  v >.  /\  E. u E. f
( y  =  <. u ,  f >.  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. ) ) )
103, 9mpbir 202 . . . . . 6  |-  E* z E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. )
1110moani 2335 . . . . 5  |-  E* z
( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
)
1211funoprab 6172 . . . 4  |-  Fun  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }
13 df-add 9003 . . . . 5  |-  +  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }
1413funeqi 5476 . . . 4  |-  ( Fun 
+  <->  Fun  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. ) ) } )
1512, 14mpbir 202 . . 3  |-  Fun  +
1613dmeqi 5073 . . . . 5  |-  dom  +  =  dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f )
>. ) ) }
17 dmoprabss 6157 . . . . 5  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( w  +R  u ) ,  ( v  +R  f ) >. )
) }  C_  ( CC  X.  CC )
1816, 17eqsstri 3380 . . . 4  |-  dom  +  C_  ( CC  X.  CC )
19 0ncn 9010 . . . . 5  |-  -.  (/)  e.  CC
20 df-c 8998 . . . . . . 7  |-  CC  =  ( R.  X.  R. )
21 oveq1 6090 . . . . . . . 8  |-  ( <.
z ,  w >.  =  x  ->  ( <. z ,  w >.  +  <. v ,  u >. )  =  ( x  +  <. v ,  u >. ) )
2221eleq1d 2504 . . . . . . 7  |-  ( <.
z ,  w >.  =  x  ->  ( ( <. z ,  w >.  + 
<. v ,  u >. )  e.  ( R.  X.  R. )  <->  ( x  +  <. v ,  u >. )  e.  ( R.  X.  R. ) ) )
23 oveq2 6091 . . . . . . . 8  |-  ( <.
v ,  u >.  =  y  ->  ( x  +  <. v ,  u >. )  =  ( x  +  y ) )
2423eleq1d 2504 . . . . . . 7  |-  ( <.
v ,  u >.  =  y  ->  ( (
x  +  <. v ,  u >. )  e.  ( R.  X.  R. )  <->  ( x  +  y )  e.  ( R.  X.  R. ) ) )
25 addcnsr 9012 . . . . . . . 8  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( <. z ,  w >.  +  <. v ,  u >. )  =  <. ( z  +R  v ) ,  ( w  +R  u )
>. )
26 addclsr 8960 . . . . . . . . . . 11  |-  ( ( z  e.  R.  /\  v  e.  R. )  ->  ( z  +R  v
)  e.  R. )
27 addclsr 8960 . . . . . . . . . . 11  |-  ( ( w  e.  R.  /\  u  e.  R. )  ->  ( w  +R  u
)  e.  R. )
2826, 27anim12i 551 . . . . . . . . . 10  |-  ( ( ( z  e.  R.  /\  v  e.  R. )  /\  ( w  e.  R.  /\  u  e.  R. )
)  ->  ( (
z  +R  v )  e.  R.  /\  (
w  +R  u )  e.  R. ) )
2928an4s 801 . . . . . . . . 9  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
z  +R  v )  e.  R.  /\  (
w  +R  u )  e.  R. ) )
30 opelxpi 4912 . . . . . . . . 9  |-  ( ( ( z  +R  v
)  e.  R.  /\  ( w  +R  u
)  e.  R. )  -> 
<. ( z  +R  v
) ,  ( w  +R  u ) >.  e.  ( R.  X.  R. ) )
3129, 30syl 16 . . . . . . . 8  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  <. ( z  +R  v ) ,  ( w  +R  u
) >.  e.  ( R. 
X.  R. ) )
3225, 31eqeltrd 2512 . . . . . . 7  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( <. z ,  w >.  +  <. v ,  u >. )  e.  ( R.  X.  R. ) )
3320, 22, 24, 322optocl 4955 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  ( R. 
X.  R. ) )
3433, 20syl6eleqr 2529 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
3519, 34oprssdm 6230 . . . 4  |-  ( CC 
X.  CC )  C_  dom  +
3618, 35eqssi 3366 . . 3  |-  dom  +  =  ( CC  X.  CC )
37 df-fn 5459 . . 3  |-  (  +  Fn  ( CC  X.  CC )  <->  ( Fun  +  /\  dom  +  =  ( CC  X.  CC ) ) )
3815, 36, 37mpbir2an 888 . 2  |-  +  Fn  ( CC  X.  CC )
3934rgen2a 2774 . 2  |-  A. x  e.  CC  A. y  e.  CC  ( x  +  y )  e.  CC
40 ffnov 6176 . 2  |-  (  +  : ( CC  X.  CC ) --> CC  <->  (  +  Fn  ( CC  X.  CC )  /\  A. x  e.  CC  A. y  e.  CC  ( x  +  y )  e.  CC ) )
4138, 39, 40mpbir2an 888 1  |-  +  :
( CC  X.  CC )
--> CC
Colors of variables: wff set class
Syntax hints:    /\ wa 360   E.wex 1551    = wceq 1653    e. wcel 1726   E*wmo 2284   A.wral 2707   <.cop 3819    X. cxp 4878   dom cdm 4880   Fun wfun 5450    Fn wfn 5451   -->wf 5452  (class class class)co 6083   {coprab 6084   R.cnr 8744    +R cplr 8748   CCcc 8990    + caddc 8995
This theorem is referenced by:  axaddcl  9028
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-recs 6635  df-rdg 6670  df-1o 6726  df-oadd 6730  df-omul 6731  df-er 6907  df-ec 6909  df-qs 6913  df-ni 8751  df-pli 8752  df-mi 8753  df-lti 8754  df-plpq 8787  df-mpq 8788  df-ltpq 8789  df-enq 8790  df-nq 8791  df-erq 8792  df-plq 8793  df-mq 8794  df-1nq 8795  df-rq 8796  df-ltnq 8797  df-np 8860  df-plp 8862  df-ltp 8864  df-plpr 8934  df-enr 8936  df-nr 8937  df-plr 8938  df-c 8998  df-add 9003
  Copyright terms: Public domain W3C validator