Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axbtwnid Unicode version

Theorem axbtwnid 25786
Description: Points are indivisible. That is, if  A lies between  B and  B, then  A  =  B. Axiom A6 of [Schwabhauser] p. 11. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
axbtwnid  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  ( A  Btwn  <. B ,  B >.  ->  A  =  B ) )

Proof of Theorem axbtwnid
Dummy variables  t 
i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 958 . . 3  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  A  e.  ( EE `  N
) )
2 simp3 959 . . 3  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  B  e.  ( EE `  N
) )
3 brbtwn 25746 . . 3  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  ( A  Btwn  <. B ,  B >.  <->  E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( B `  i
) ) ) ) )
41, 2, 2, 3syl3anc 1184 . 2  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  ( A  Btwn  <. B ,  B >.  <->  E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( B `  i
) ) ) ) )
5 0re 9051 . . . . . . 7  |-  0  e.  RR
6 1re 9050 . . . . . . 7  |-  1  e.  RR
75, 6elicc2i 10936 . . . . . 6  |-  ( t  e.  ( 0 [,] 1 )  <->  ( t  e.  RR  /\  0  <_ 
t  /\  t  <_  1 ) )
87simp1bi 972 . . . . 5  |-  ( t  e.  ( 0 [,] 1 )  ->  t  e.  RR )
98recnd 9074 . . . 4  |-  ( t  e.  ( 0 [,] 1 )  ->  t  e.  CC )
10 eqeefv 25750 . . . . . . . 8  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( A  =  B  <->  A. i  e.  (
1 ... N ) ( A `  i )  =  ( B `  i ) ) )
11103adant1 975 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  ( A  =  B  <->  A. i  e.  ( 1 ... N
) ( A `  i )  =  ( B `  i ) ) )
1211adantr 452 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  t  e.  CC )  ->  ( A  =  B  <->  A. i  e.  (
1 ... N ) ( A `  i )  =  ( B `  i ) ) )
13 ax-1cn 9008 . . . . . . . . . . . 12  |-  1  e.  CC
14 npcan 9274 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  t  e.  CC )  ->  ( ( 1  -  t )  +  t )  =  1 )
1513, 14mpan 652 . . . . . . . . . . 11  |-  ( t  e.  CC  ->  (
( 1  -  t
)  +  t )  =  1 )
1615ad2antlr 708 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  t  e.  CC )  /\  i  e.  ( 1 ... N
) )  ->  (
( 1  -  t
)  +  t )  =  1 )
1716oveq1d 6059 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  t  e.  CC )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( 1  -  t )  +  t )  x.  ( B `
 i ) )  =  ( 1  x.  ( B `  i
) ) )
18 subcl 9265 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  t  e.  CC )  ->  ( 1  -  t
)  e.  CC )
1913, 18mpan 652 . . . . . . . . . . 11  |-  ( t  e.  CC  ->  (
1  -  t )  e.  CC )
2019ad2antlr 708 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  t  e.  CC )  /\  i  e.  ( 1 ... N
) )  ->  (
1  -  t )  e.  CC )
21 simplr 732 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  t  e.  CC )  /\  i  e.  ( 1 ... N
) )  ->  t  e.  CC )
22 simpll3 998 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  t  e.  CC )  /\  i  e.  ( 1 ... N
) )  ->  B  e.  ( EE `  N
) )
23 fveecn 25749 . . . . . . . . . . 11  |-  ( ( B  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( B `  i )  e.  CC )
2422, 23sylancom 649 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  t  e.  CC )  /\  i  e.  ( 1 ... N
) )  ->  ( B `  i )  e.  CC )
2520, 21, 24adddird 9073 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  t  e.  CC )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( 1  -  t )  +  t )  x.  ( B `
 i ) )  =  ( ( ( 1  -  t )  x.  ( B `  i ) )  +  ( t  x.  ( B `  i )
) ) )
2624mulid2d 9066 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  t  e.  CC )  /\  i  e.  ( 1 ... N
) )  ->  (
1  x.  ( B `
 i ) )  =  ( B `  i ) )
2717, 25, 263eqtr3rd 2449 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  t  e.  CC )  /\  i  e.  ( 1 ... N
) )  ->  ( B `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i ) )  +  ( t  x.  ( B `  i )
) ) )
2827eqeq2d 2419 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  t  e.  CC )  /\  i  e.  ( 1 ... N
) )  ->  (
( A `  i
)  =  ( B `
 i )  <->  ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( B `  i ) ) ) ) )
2928ralbidva 2686 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  t  e.  CC )  ->  ( A. i  e.  ( 1 ... N
) ( A `  i )  =  ( B `  i )  <->  A. i  e.  (
1 ... N ) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i ) )  +  ( t  x.  ( B `  i )
) ) ) )
3012, 29bitrd 245 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  t  e.  CC )  ->  ( A  =  B  <->  A. i  e.  (
1 ... N ) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i ) )  +  ( t  x.  ( B `  i )
) ) ) )
3130biimprd 215 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  t  e.  CC )  ->  ( A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( B `  i ) ) )  ->  A  =  B ) )
329, 31sylan2 461 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( B `  i ) ) )  ->  A  =  B ) )
3332rexlimdva 2794 . 2  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  ( E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( B `  i
) ) )  ->  A  =  B )
)
344, 33sylbid 207 1  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  ( A  Btwn  <. B ,  B >.  ->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2670   E.wrex 2671   <.cop 3781   class class class wbr 4176   ` cfv 5417  (class class class)co 6044   CCcc 8948   RRcr 8949   0cc0 8950   1c1 8951    + caddc 8953    x. cmul 8955    <_ cle 9081    - cmin 9251   NNcn 9960   [,]cicc 10879   ...cfz 11003   EEcee 25735    Btwn cbtwn 25736
This theorem is referenced by:  btwncomim  25855  btwnswapid  25859  btwnintr  25861  btwnexch3  25862  ifscgr  25886  idinside  25926  btwnconn1lem12  25940  outsideofrflx  25969
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-riota 6512  df-recs 6596  df-rdg 6631  df-er 6868  df-map 6983  df-en 7073  df-dom 7074  df-sdom 7075  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-nn 9961  df-z 10243  df-uz 10449  df-icc 10883  df-fz 11004  df-ee 25738  df-btwn 25739
  Copyright terms: Public domain W3C validator