Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axbtwnid Unicode version

Theorem axbtwnid 25592
Description: Points are indivisible. That is, if  A lies between  B and  B, then  A  =  B. Axiom A6 of [Schwabhauser] p. 11. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
axbtwnid  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  ( A  Btwn  <. B ,  B >.  ->  A  =  B ) )

Proof of Theorem axbtwnid
Dummy variables  t 
i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 958 . . 3  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  A  e.  ( EE `  N
) )
2 simp3 959 . . 3  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  B  e.  ( EE `  N
) )
3 brbtwn 25552 . . 3  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  ( A  Btwn  <. B ,  B >.  <->  E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( B `  i
) ) ) ) )
41, 2, 2, 3syl3anc 1184 . 2  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  ( A  Btwn  <. B ,  B >.  <->  E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( B `  i
) ) ) ) )
5 0re 9024 . . . . . . 7  |-  0  e.  RR
6 1re 9023 . . . . . . 7  |-  1  e.  RR
75, 6elicc2i 10908 . . . . . 6  |-  ( t  e.  ( 0 [,] 1 )  <->  ( t  e.  RR  /\  0  <_ 
t  /\  t  <_  1 ) )
87simp1bi 972 . . . . 5  |-  ( t  e.  ( 0 [,] 1 )  ->  t  e.  RR )
98recnd 9047 . . . 4  |-  ( t  e.  ( 0 [,] 1 )  ->  t  e.  CC )
10 eqeefv 25556 . . . . . . . 8  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( A  =  B  <->  A. i  e.  (
1 ... N ) ( A `  i )  =  ( B `  i ) ) )
11103adant1 975 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  ( A  =  B  <->  A. i  e.  ( 1 ... N
) ( A `  i )  =  ( B `  i ) ) )
1211adantr 452 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  t  e.  CC )  ->  ( A  =  B  <->  A. i  e.  (
1 ... N ) ( A `  i )  =  ( B `  i ) ) )
13 ax-1cn 8981 . . . . . . . . . . . 12  |-  1  e.  CC
14 npcan 9246 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  t  e.  CC )  ->  ( ( 1  -  t )  +  t )  =  1 )
1513, 14mpan 652 . . . . . . . . . . 11  |-  ( t  e.  CC  ->  (
( 1  -  t
)  +  t )  =  1 )
1615ad2antlr 708 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  t  e.  CC )  /\  i  e.  ( 1 ... N
) )  ->  (
( 1  -  t
)  +  t )  =  1 )
1716oveq1d 6035 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  t  e.  CC )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( 1  -  t )  +  t )  x.  ( B `
 i ) )  =  ( 1  x.  ( B `  i
) ) )
18 subcl 9237 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  t  e.  CC )  ->  ( 1  -  t
)  e.  CC )
1913, 18mpan 652 . . . . . . . . . . 11  |-  ( t  e.  CC  ->  (
1  -  t )  e.  CC )
2019ad2antlr 708 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  t  e.  CC )  /\  i  e.  ( 1 ... N
) )  ->  (
1  -  t )  e.  CC )
21 simplr 732 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  t  e.  CC )  /\  i  e.  ( 1 ... N
) )  ->  t  e.  CC )
22 simpll3 998 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  t  e.  CC )  /\  i  e.  ( 1 ... N
) )  ->  B  e.  ( EE `  N
) )
23 fveecn 25555 . . . . . . . . . . 11  |-  ( ( B  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( B `  i )  e.  CC )
2422, 23sylancom 649 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  t  e.  CC )  /\  i  e.  ( 1 ... N
) )  ->  ( B `  i )  e.  CC )
2520, 21, 24adddird 9046 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  t  e.  CC )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( 1  -  t )  +  t )  x.  ( B `
 i ) )  =  ( ( ( 1  -  t )  x.  ( B `  i ) )  +  ( t  x.  ( B `  i )
) ) )
2624mulid2d 9039 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  t  e.  CC )  /\  i  e.  ( 1 ... N
) )  ->  (
1  x.  ( B `
 i ) )  =  ( B `  i ) )
2717, 25, 263eqtr3rd 2428 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  t  e.  CC )  /\  i  e.  ( 1 ... N
) )  ->  ( B `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i ) )  +  ( t  x.  ( B `  i )
) ) )
2827eqeq2d 2398 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  t  e.  CC )  /\  i  e.  ( 1 ... N
) )  ->  (
( A `  i
)  =  ( B `
 i )  <->  ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( B `  i ) ) ) ) )
2928ralbidva 2665 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  t  e.  CC )  ->  ( A. i  e.  ( 1 ... N
) ( A `  i )  =  ( B `  i )  <->  A. i  e.  (
1 ... N ) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i ) )  +  ( t  x.  ( B `  i )
) ) ) )
3012, 29bitrd 245 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  t  e.  CC )  ->  ( A  =  B  <->  A. i  e.  (
1 ... N ) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i ) )  +  ( t  x.  ( B `  i )
) ) ) )
3130biimprd 215 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  t  e.  CC )  ->  ( A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( B `  i ) ) )  ->  A  =  B ) )
329, 31sylan2 461 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( A. i  e.  ( 1 ... N
) ( A `  i )  =  ( ( ( 1  -  t )  x.  ( B `  i )
)  +  ( t  x.  ( B `  i ) ) )  ->  A  =  B ) )
3332rexlimdva 2773 . 2  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  ( E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( A `  i
)  =  ( ( ( 1  -  t
)  x.  ( B `
 i ) )  +  ( t  x.  ( B `  i
) ) )  ->  A  =  B )
)
344, 33sylbid 207 1  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  ( A  Btwn  <. B ,  B >.  ->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2649   E.wrex 2650   <.cop 3760   class class class wbr 4153   ` cfv 5394  (class class class)co 6020   CCcc 8921   RRcr 8922   0cc0 8923   1c1 8924    + caddc 8926    x. cmul 8928    <_ cle 9054    - cmin 9223   NNcn 9932   [,]cicc 10851   ...cfz 10975   EEcee 25541    Btwn cbtwn 25542
This theorem is referenced by:  btwncomim  25661  btwnswapid  25665  btwnintr  25667  btwnexch3  25668  ifscgr  25692  idinside  25732  btwnconn1lem12  25746  outsideofrflx  25775
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-er 6841  df-map 6956  df-en 7046  df-dom 7047  df-sdom 7048  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-nn 9933  df-z 10215  df-uz 10421  df-icc 10855  df-fz 10976  df-ee 25544  df-btwn 25545
  Copyright terms: Public domain W3C validator