Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axcgrid Unicode version

Theorem axcgrid 23718
Description: If there is no distance between  A and  B, then  A  =  B. Axiom A3 of [Schwabhauser] p. 10. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
axcgrid  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( <. A ,  B >.Cgr
<. C ,  C >.  ->  A  =  B )
)

Proof of Theorem axcgrid
StepHypRef Expression
1 fveecn 23704 . . . . . . . . . 10  |-  ( ( C  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( C `  i )  e.  CC )
2 subid 8947 . . . . . . . . . . . 12  |-  ( ( C `  i )  e.  CC  ->  (
( C `  i
)  -  ( C `
 i ) )  =  0 )
32oveq1d 5725 . . . . . . . . . . 11  |-  ( ( C `  i )  e.  CC  ->  (
( ( C `  i )  -  ( C `  i )
) ^ 2 )  =  ( 0 ^ 2 ) )
4 sq0 11073 . . . . . . . . . . 11  |-  ( 0 ^ 2 )  =  0
53, 4syl6eq 2301 . . . . . . . . . 10  |-  ( ( C `  i )  e.  CC  ->  (
( ( C `  i )  -  ( C `  i )
) ^ 2 )  =  0 )
61, 5syl 17 . . . . . . . . 9  |-  ( ( C  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( ( ( C `  i )  -  ( C `  i ) ) ^
2 )  =  0 )
76sumeq2dv 12053 . . . . . . . 8  |-  ( C  e.  ( EE `  N )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( C `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) 0 )
8 fzfid 10913 . . . . . . . . 9  |-  ( C  e.  ( EE `  N )  ->  (
1 ... N )  e. 
Fin )
9 sumz 12072 . . . . . . . . . 10  |-  ( ( ( 1 ... N
)  C_  ( ZZ>= ` 
1 )  \/  (
1 ... N )  e. 
Fin )  ->  sum_ i  e.  ( 1 ... N
) 0  =  0 )
109olcs 386 . . . . . . . . 9  |-  ( ( 1 ... N )  e.  Fin  ->  sum_ i  e.  ( 1 ... N
) 0  =  0 )
118, 10syl 17 . . . . . . . 8  |-  ( C  e.  ( EE `  N )  ->  sum_ i  e.  ( 1 ... N
) 0  =  0 )
127, 11eqtrd 2285 . . . . . . 7  |-  ( C  e.  ( EE `  N )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( C `  i ) ) ^
2 )  =  0 )
13123ad2ant3 983 . . . . . 6  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( C `  i ) ) ^
2 )  =  0 )
1413eqeq2d 2264 . . . . 5  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( C `  i ) ) ^ 2 )  <->  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  0 ) )
15 fzfid 10913 . . . . . . . 8  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( 1 ... N
)  e.  Fin )
16 fveere 23703 . . . . . . . . . . 11  |-  ( ( A  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( A `  i )  e.  RR )
1716adantlr 698 . . . . . . . . . 10  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  ( A `  i )  e.  RR )
18 fveere 23703 . . . . . . . . . . 11  |-  ( ( B  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( B `  i )  e.  RR )
1918adantll 697 . . . . . . . . . 10  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  ( B `  i )  e.  RR )
2017, 19resubcld 9091 . . . . . . . . 9  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( A `  i
)  -  ( B `
 i ) )  e.  RR )
2120resqcld 11149 . . . . . . . 8  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( A `  i )  -  ( B `  i )
) ^ 2 )  e.  RR )
2220sqge0d 11150 . . . . . . . 8  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  0  <_  ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 ) )
2315, 21, 22fsum00 12133 . . . . . . 7  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  0  <->  A. i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  0 ) )
24 fveecn 23704 . . . . . . . . . 10  |-  ( ( A  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( A `  i )  e.  CC )
25 fveecn 23704 . . . . . . . . . 10  |-  ( ( B  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( B `  i )  e.  CC )
26 subcl 8931 . . . . . . . . . . . 12  |-  ( ( ( A `  i
)  e.  CC  /\  ( B `  i )  e.  CC )  -> 
( ( A `  i )  -  ( B `  i )
)  e.  CC )
27 sqeq0 11046 . . . . . . . . . . . 12  |-  ( ( ( A `  i
)  -  ( B `
 i ) )  e.  CC  ->  (
( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  0  <->  ( ( A `  i )  -  ( B `  i ) )  =  0 ) )
2826, 27syl 17 . . . . . . . . . . 11  |-  ( ( ( A `  i
)  e.  CC  /\  ( B `  i )  e.  CC )  -> 
( ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  0  <-> 
( ( A `  i )  -  ( B `  i )
)  =  0 ) )
29 subeq0 8953 . . . . . . . . . . 11  |-  ( ( ( A `  i
)  e.  CC  /\  ( B `  i )  e.  CC )  -> 
( ( ( A `
 i )  -  ( B `  i ) )  =  0  <->  ( A `  i )  =  ( B `  i ) ) )
3028, 29bitrd 246 . . . . . . . . . 10  |-  ( ( ( A `  i
)  e.  CC  /\  ( B `  i )  e.  CC )  -> 
( ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  0  <-> 
( A `  i
)  =  ( B `
 i ) ) )
3124, 25, 30syl2an 465 . . . . . . . . 9  |-  ( ( ( A  e.  ( EE `  N )  /\  i  e.  ( 1 ... N ) )  /\  ( B  e.  ( EE `  N )  /\  i  e.  ( 1 ... N
) ) )  -> 
( ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  0  <-> 
( A `  i
)  =  ( B `
 i ) ) )
3231anandirs 807 . . . . . . . 8  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  0  <->  ( A `  i )  =  ( B `  i ) ) )
3332ralbidva 2523 . . . . . . 7  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( A. i  e.  ( 1 ... N
) ( ( ( A `  i )  -  ( B `  i ) ) ^
2 )  =  0  <->  A. i  e.  (
1 ... N ) ( A `  i )  =  ( B `  i ) ) )
3423, 33bitrd 246 . . . . . 6  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( sum_ i  e.  ( 1 ... N ) ( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  0  <->  A. i  e.  ( 1 ... N
) ( A `  i )  =  ( B `  i ) ) )
35343adant3 980 . . . . 5  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  0  <->  A. i  e.  ( 1 ... N
) ( A `  i )  =  ( B `  i ) ) )
3614, 35bitrd 246 . . . 4  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( C `  i ) ) ^ 2 )  <->  A. i  e.  (
1 ... N ) ( A `  i )  =  ( B `  i ) ) )
37 simp1 960 . . . . 5  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  A  e.  ( EE `  N
) )
38 simp2 961 . . . . 5  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  B  e.  ( EE `  N
) )
39 simp3 962 . . . . 5  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  C  e.  ( EE `  N
) )
40 brcgr 23702 . . . . 5  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( <. A ,  B >.Cgr
<. C ,  C >.  <->  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( C `  i ) ) ^ 2 ) ) )
4137, 38, 39, 39, 40syl22anc 1188 . . . 4  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( <. A ,  B >.Cgr <. C ,  C >.  <->  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( C `  i ) ) ^ 2 ) ) )
42 eqeefv 23705 . . . . 5  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( A  =  B  <->  A. i  e.  (
1 ... N ) ( A `  i )  =  ( B `  i ) ) )
43423adant3 980 . . . 4  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( A  =  B  <->  A. i  e.  ( 1 ... N
) ( A `  i )  =  ( B `  i ) ) )
4436, 41, 433bitr4d 278 . . 3  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( <. A ,  B >.Cgr <. C ,  C >.  <->  A  =  B ) )
4544biimpd 200 . 2  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( <. A ,  B >.Cgr <. C ,  C >.  ->  A  =  B )
)
4645adantl 454 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( <. A ,  B >.Cgr
<. C ,  C >.  ->  A  =  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   A.wral 2509    C_ wss 3078   <.cop 3547   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   Fincfn 6749   CCcc 8615   RRcr 8616   0cc0 8617   1c1 8618    - cmin 8917   NNcn 9626   2c2 9675   ZZ>=cuz 10109   ...cfz 10660   ^cexp 10982   sum_csu 12035   EEcee 23690  Cgrccgr 23692
This theorem is referenced by:  cgrtriv  23799  cgrid2  23800  cgrdegen  23801  segconeq  23807  btwntriv2  23809  btwnconn1lem7  23890  btwnconn1lem11  23894  btwnconn1lem12  23895
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-oadd 6369  df-er 6546  df-map 6660  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-sup 7078  df-oi 7109  df-card 7456  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-ico 10540  df-fz 10661  df-fzo 10749  df-seq 10925  df-exp 10983  df-hash 11216  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-clim 11839  df-sum 12036  df-ee 23693  df-cgr 23695
  Copyright terms: Public domain W3C validator