Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axcgrrflx Unicode version

Theorem axcgrrflx 23952
Description:  A is as far from  B as  B is from  A. Axiom A1 of [Schwabhauser] p. 10. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
axcgrrflx  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  <. A ,  B >.Cgr <. B ,  A >. )

Proof of Theorem axcgrrflx
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 fveecn 23940 . . . . . 6  |-  ( ( A  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( A `  i )  e.  CC )
2 fveecn 23940 . . . . . 6  |-  ( ( B  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( B `  i )  e.  CC )
3 sqsubswap 11161 . . . . . 6  |-  ( ( ( A `  i
)  e.  CC  /\  ( B `  i )  e.  CC )  -> 
( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  ( ( ( B `  i )  -  ( A `  i ) ) ^
2 ) )
41, 2, 3syl2an 463 . . . . 5  |-  ( ( ( A  e.  ( EE `  N )  /\  i  e.  ( 1 ... N ) )  /\  ( B  e.  ( EE `  N )  /\  i  e.  ( 1 ... N
) ) )  -> 
( ( ( A `
 i )  -  ( B `  i ) ) ^ 2 )  =  ( ( ( B `  i )  -  ( A `  i ) ) ^
2 ) )
54anandirs 804 . . . 4  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  ( ( ( B `  i )  -  ( A `  i ) ) ^
2 ) )
65sumeq2dv 12172 . . 3  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  ->  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( A `  i ) ) ^ 2 ) )
7 id 19 . . . 4  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )
8 simpr 447 . . . 4  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  ->  B  e.  ( EE `  N ) )
9 simpl 443 . . . 4  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  ->  A  e.  ( EE `  N ) )
10 brcgr 23938 . . . 4  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( B  e.  ( EE `  N )  /\  A  e.  ( EE `  N
) ) )  -> 
( <. A ,  B >.Cgr
<. B ,  A >.  <->  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( A `  i ) ) ^ 2 ) ) )
117, 8, 9, 10syl12anc 1180 . . 3  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  -> 
( <. A ,  B >.Cgr
<. B ,  A >.  <->  sum_ i  e.  ( 1 ... N ) ( ( ( A `  i )  -  ( B `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( A `  i ) ) ^ 2 ) ) )
126, 11mpbird 223 . 2  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  ->  <. A ,  B >.Cgr <. B ,  A >. )
13123adant1 973 1  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  ->  <. A ,  B >.Cgr <. B ,  A >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1685   <.cop 3644   class class class wbr 4024   ` cfv 5221  (class class class)co 5820   CCcc 8731   1c1 8734    - cmin 9033   NNcn 9742   2c2 9791   ...cfz 10778   ^cexp 11100   sum_csu 12154   EEcee 23926  Cgrccgr 23928
This theorem is referenced by:  cgrrflx2d  24017  cgrrflx  24020  endofsegid  24118
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-er 6656  df-map 6770  df-en 6860  df-dom 6861  df-sdom 6862  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-nn 9743  df-2 9800  df-n0 9962  df-z 10021  df-uz 10227  df-fz 10779  df-seq 11043  df-exp 11101  df-sum 12155  df-ee 23929  df-cgr 23931
  Copyright terms: Public domain W3C validator