Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axcont Structured version   Unicode version

Theorem axcont 25907
Description: The axiom of continuity. Take two sets of points  A and  B. If all the points in  A come before the points of  B on a line, then there is a point separating the two. Axiom A11 of [Schwabhauser] p. 13. (Contributed by Scott Fenton, 20-Jun-2013.)
Assertion
Ref Expression
axcont  |-  ( ( N  e.  NN  /\  ( A  C_  ( EE
`  N )  /\  B  C_  ( EE `  N )  /\  E. a  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  x  Btwn  <.
a ,  y >.
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
Distinct variable groups:    A, a,
b, x, y    B, a, b, x, y    N, a, b, x, y

Proof of Theorem axcont
StepHypRef Expression
1 simpr 448 . . . . . . . . 9  |-  ( ( a  e.  ( EE
`  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. a ,  y
>. )  ->  A. x  e.  A  A. y  e.  B  x  Btwn  <.
a ,  y >.
)
213anim3i 1141 . . . . . . . 8  |-  ( ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  ( a  e.  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <.
a ,  y >.
) )  ->  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <.
a ,  y >.
) )
32anim2i 553 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  C_  ( EE
`  N )  /\  B  C_  ( EE `  N )  /\  (
a  e.  ( EE
`  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. a ,  y
>. ) ) )  -> 
( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. a ,  y
>. ) ) )
4 simpr3l 1018 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  C_  ( EE
`  N )  /\  B  C_  ( EE `  N )  /\  (
a  e.  ( EE
`  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. a ,  y
>. ) ) )  -> 
a  e.  ( EE
`  N ) )
5 axcontlem12 25906 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. a ,  y
>. ) )  /\  a  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
63, 4, 5syl2anc 643 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  C_  ( EE
`  N )  /\  B  C_  ( EE `  N )  /\  (
a  e.  ( EE
`  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. a ,  y
>. ) ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. )
763exp2 1171 . . . . 5  |-  ( N  e.  NN  ->  ( A  C_  ( EE `  N )  ->  ( B  C_  ( EE `  N )  ->  (
( a  e.  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. a ,  y >. )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. ) ) ) )
87com4r 82 . . . 4  |-  ( ( a  e.  ( EE
`  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. a ,  y
>. )  ->  ( N  e.  NN  ->  ( A  C_  ( EE `  N )  ->  ( B  C_  ( EE `  N )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
) ) )
98rexlimiva 2817 . . 3  |-  ( E. a  e.  ( EE
`  N ) A. x  e.  A  A. y  e.  B  x  Btwn  <. a ,  y
>.  ->  ( N  e.  NN  ->  ( A  C_  ( EE `  N
)  ->  ( B  C_  ( EE `  N
)  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
) ) )
109com4l 80 . 2  |-  ( N  e.  NN  ->  ( A  C_  ( EE `  N )  ->  ( B  C_  ( EE `  N )  ->  ( E. a  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  x  Btwn  <. a ,  y
>.  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. ) ) ) )
11103imp2 1168 1  |-  ( ( N  e.  NN  /\  ( A  C_  ( EE
`  N )  /\  B  C_  ( EE `  N )  /\  E. a  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  x  Btwn  <.
a ,  y >.
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    e. wcel 1725   A.wral 2697   E.wrex 2698    C_ wss 3312   <.cop 3809   class class class wbr 4204   ` cfv 5446   NNcn 9992   EEcee 25819    Btwn cbtwn 25820
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-z 10275  df-uz 10481  df-ico 10914  df-icc 10915  df-fz 11036  df-ee 25822  df-btwn 25823
  Copyright terms: Public domain W3C validator