Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axcont Unicode version

Theorem axcont 25346
Description: The axiom of continuity. Take two sets of points  A and  B. If all the points in  A come before the points of  B on a line, then there is a point separating the two. Axiom A11 of [Schwabhauser] p. 13. (Contributed by Scott Fenton, 20-Jun-2013.)
Assertion
Ref Expression
axcont  |-  ( ( N  e.  NN  /\  ( A  C_  ( EE
`  N )  /\  B  C_  ( EE `  N )  /\  E. a  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  x  Btwn  <.
a ,  y >.
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
Distinct variable groups:    A, a,
b, x, y    B, a, b, x, y    N, a, b, x, y

Proof of Theorem axcont
StepHypRef Expression
1 simpr 447 . . . . . . . . 9  |-  ( ( a  e.  ( EE
`  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. a ,  y
>. )  ->  A. x  e.  A  A. y  e.  B  x  Btwn  <.
a ,  y >.
)
213anim3i 1140 . . . . . . . 8  |-  ( ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  ( a  e.  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <.
a ,  y >.
) )  ->  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N
)  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <.
a ,  y >.
) )
32anim2i 552 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  C_  ( EE
`  N )  /\  B  C_  ( EE `  N )  /\  (
a  e.  ( EE
`  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. a ,  y
>. ) ) )  -> 
( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. a ,  y
>. ) ) )
4 simpr3l 1017 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  C_  ( EE
`  N )  /\  B  C_  ( EE `  N )  /\  (
a  e.  ( EE
`  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. a ,  y
>. ) ) )  -> 
a  e.  ( EE
`  N ) )
5 axcontlem12 25345 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  C_  ( EE `  N )  /\  B  C_  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. a ,  y
>. ) )  /\  a  e.  ( EE `  N
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
63, 4, 5syl2anc 642 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  C_  ( EE
`  N )  /\  B  C_  ( EE `  N )  /\  (
a  e.  ( EE
`  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. a ,  y
>. ) ) )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. )
763exp2 1170 . . . . 5  |-  ( N  e.  NN  ->  ( A  C_  ( EE `  N )  ->  ( B  C_  ( EE `  N )  ->  (
( a  e.  ( EE `  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. a ,  y >. )  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. ) ) ) )
87com4r 80 . . . 4  |-  ( ( a  e.  ( EE
`  N )  /\  A. x  e.  A  A. y  e.  B  x  Btwn  <. a ,  y
>. )  ->  ( N  e.  NN  ->  ( A  C_  ( EE `  N )  ->  ( B  C_  ( EE `  N )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
) ) )
98rexlimiva 2747 . . 3  |-  ( E. a  e.  ( EE
`  N ) A. x  e.  A  A. y  e.  B  x  Btwn  <. a ,  y
>.  ->  ( N  e.  NN  ->  ( A  C_  ( EE `  N
)  ->  ( B  C_  ( EE `  N
)  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
) ) )
109com4l 78 . 2  |-  ( N  e.  NN  ->  ( A  C_  ( EE `  N )  ->  ( B  C_  ( EE `  N )  ->  ( E. a  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  x  Btwn  <. a ,  y
>.  ->  E. b  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y
>. ) ) ) )
11103imp2 1167 1  |-  ( ( N  e.  NN  /\  ( A  C_  ( EE
`  N )  /\  B  C_  ( EE `  N )  /\  E. a  e.  ( EE `  N ) A. x  e.  A  A. y  e.  B  x  Btwn  <.
a ,  y >.
) )  ->  E. b  e.  ( EE `  N
) A. x  e.  A  A. y  e.  B  b  Btwn  <. x ,  y >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 935    e. wcel 1715   A.wral 2628   E.wrex 2629    C_ wss 3238   <.cop 3732   class class class wbr 4125   ` cfv 5358   NNcn 9893   EEcee 25258    Btwn cbtwn 25259
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961  ax-pre-sup 8962
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-er 6802  df-map 6917  df-en 7007  df-dom 7008  df-sdom 7009  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-div 9571  df-nn 9894  df-z 10176  df-uz 10382  df-ico 10815  df-icc 10816  df-fz 10936  df-ee 25261  df-btwn 25262
  Copyright terms: Public domain W3C validator