MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdistr Unicode version

Theorem axdistr 8796
Description: Distributive law for complex numbers. Axiom 11 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-distr 8820 be used later. Instead, use adddi 8842. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axdistr  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  +  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )

Proof of Theorem axdistr
Dummy variables  x  y  z  w  v  u  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcnqs 8780 . 2  |-  CC  =  ( ( R.  X.  R. ) /. `'  _E  )
2 addcnsrec 8781 . 2  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( [ <. z ,  w >. ] `'  _E  +  [ <. v ,  u >. ] `'  _E  )  =  [ <. ( z  +R  v
) ,  ( w  +R  u ) >. ] `'  _E  )
3 mulcnsrec 8782 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( ( z  +R  v )  e.  R.  /\  ( w  +R  u
)  e.  R. )
)  ->  ( [ <. x ,  y >. ] `'  _E  x.  [ <. ( z  +R  v ) ,  ( w  +R  u )
>. ] `'  _E  )  =  [ <. ( ( x  .R  ( z  +R  v ) )  +R  ( -1R  .R  (
y  .R  ( w  +R  u ) ) ) ) ,  ( ( y  .R  ( z  +R  v ) )  +R  ( x  .R  ( w  +R  u
) ) ) >. ] `'  _E  )
4 mulcnsrec 8782 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( [ <. x ,  y >. ] `'  _E  x.  [ <. z ,  w >. ] `'  _E  )  =  [ <. ( ( x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) ) ,  ( ( y  .R  z
)  +R  ( x  .R  w ) )
>. ] `'  _E  )
5 mulcnsrec 8782 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( [ <. x ,  y >. ] `'  _E  x.  [ <. v ,  u >. ] `'  _E  )  =  [ <. ( ( x  .R  v )  +R  ( -1R  .R  (
y  .R  u )
) ) ,  ( ( y  .R  v
)  +R  ( x  .R  u ) )
>. ] `'  _E  )
6 addcnsrec 8781 . 2  |-  ( ( ( ( ( x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) )  e.  R.  /\  ( ( y  .R  z )  +R  (
x  .R  w )
)  e.  R. )  /\  ( ( ( x  .R  v )  +R  ( -1R  .R  (
y  .R  u )
) )  e.  R.  /\  ( ( y  .R  v )  +R  (
x  .R  u )
)  e.  R. )
)  ->  ( [ <. ( ( x  .R  z )  +R  ( -1R  .R  ( y  .R  w ) ) ) ,  ( ( y  .R  z )  +R  ( x  .R  w
) ) >. ] `'  _E  +  [ <. (
( x  .R  v
)  +R  ( -1R 
.R  ( y  .R  u ) ) ) ,  ( ( y  .R  v )  +R  ( x  .R  u
) ) >. ] `'  _E  )  =  [ <. ( ( ( x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) )  +R  (
( x  .R  v
)  +R  ( -1R 
.R  ( y  .R  u ) ) ) ) ,  ( ( ( y  .R  z
)  +R  ( x  .R  w ) )  +R  ( ( y  .R  v )  +R  ( x  .R  u
) ) ) >. ] `'  _E  )
7 addclsr 8721 . . . 4  |-  ( ( z  e.  R.  /\  v  e.  R. )  ->  ( z  +R  v
)  e.  R. )
8 addclsr 8721 . . . 4  |-  ( ( w  e.  R.  /\  u  e.  R. )  ->  ( w  +R  u
)  e.  R. )
97, 8anim12i 549 . . 3  |-  ( ( ( z  e.  R.  /\  v  e.  R. )  /\  ( w  e.  R.  /\  u  e.  R. )
)  ->  ( (
z  +R  v )  e.  R.  /\  (
w  +R  u )  e.  R. ) )
109an4s 799 . 2  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
z  +R  v )  e.  R.  /\  (
w  +R  u )  e.  R. ) )
11 mulclsr 8722 . . . . 5  |-  ( ( x  e.  R.  /\  z  e.  R. )  ->  ( x  .R  z
)  e.  R. )
12 m1r 8720 . . . . . 6  |-  -1R  e.  R.
13 mulclsr 8722 . . . . . 6  |-  ( ( y  e.  R.  /\  w  e.  R. )  ->  ( y  .R  w
)  e.  R. )
14 mulclsr 8722 . . . . . 6  |-  ( ( -1R  e.  R.  /\  ( y  .R  w
)  e.  R. )  ->  ( -1R  .R  (
y  .R  w )
)  e.  R. )
1512, 13, 14sylancr 644 . . . . 5  |-  ( ( y  e.  R.  /\  w  e.  R. )  ->  ( -1R  .R  (
y  .R  w )
)  e.  R. )
16 addclsr 8721 . . . . 5  |-  ( ( ( x  .R  z
)  e.  R.  /\  ( -1R  .R  ( y  .R  w ) )  e.  R. )  -> 
( ( x  .R  z )  +R  ( -1R  .R  ( y  .R  w ) ) )  e.  R. )
1711, 15, 16syl2an 463 . . . 4  |-  ( ( ( x  e.  R.  /\  z  e.  R. )  /\  ( y  e.  R.  /\  w  e.  R. )
)  ->  ( (
x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) )  e.  R. )
1817an4s 799 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( (
x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) )  e.  R. )
19 mulclsr 8722 . . . . 5  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( y  .R  z
)  e.  R. )
20 mulclsr 8722 . . . . 5  |-  ( ( x  e.  R.  /\  w  e.  R. )  ->  ( x  .R  w
)  e.  R. )
21 addclsr 8721 . . . . 5  |-  ( ( ( y  .R  z
)  e.  R.  /\  ( x  .R  w
)  e.  R. )  ->  ( ( y  .R  z )  +R  (
x  .R  w )
)  e.  R. )
2219, 20, 21syl2anr 464 . . . 4  |-  ( ( ( x  e.  R.  /\  w  e.  R. )  /\  ( y  e.  R.  /\  z  e.  R. )
)  ->  ( (
y  .R  z )  +R  ( x  .R  w
) )  e.  R. )
2322an42s 800 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( (
y  .R  z )  +R  ( x  .R  w
) )  e.  R. )
2418, 23jca 518 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( (
( x  .R  z
)  +R  ( -1R 
.R  ( y  .R  w ) ) )  e.  R.  /\  (
( y  .R  z
)  +R  ( x  .R  w ) )  e.  R. ) )
25 mulclsr 8722 . . . . 5  |-  ( ( x  e.  R.  /\  v  e.  R. )  ->  ( x  .R  v
)  e.  R. )
26 mulclsr 8722 . . . . . 6  |-  ( ( y  e.  R.  /\  u  e.  R. )  ->  ( y  .R  u
)  e.  R. )
27 mulclsr 8722 . . . . . 6  |-  ( ( -1R  e.  R.  /\  ( y  .R  u
)  e.  R. )  ->  ( -1R  .R  (
y  .R  u )
)  e.  R. )
2812, 26, 27sylancr 644 . . . . 5  |-  ( ( y  e.  R.  /\  u  e.  R. )  ->  ( -1R  .R  (
y  .R  u )
)  e.  R. )
29 addclsr 8721 . . . . 5  |-  ( ( ( x  .R  v
)  e.  R.  /\  ( -1R  .R  ( y  .R  u ) )  e.  R. )  -> 
( ( x  .R  v )  +R  ( -1R  .R  ( y  .R  u ) ) )  e.  R. )
3025, 28, 29syl2an 463 . . . 4  |-  ( ( ( x  e.  R.  /\  v  e.  R. )  /\  ( y  e.  R.  /\  u  e.  R. )
)  ->  ( (
x  .R  v )  +R  ( -1R  .R  (
y  .R  u )
) )  e.  R. )
3130an4s 799 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
x  .R  v )  +R  ( -1R  .R  (
y  .R  u )
) )  e.  R. )
32 mulclsr 8722 . . . . 5  |-  ( ( y  e.  R.  /\  v  e.  R. )  ->  ( y  .R  v
)  e.  R. )
33 mulclsr 8722 . . . . 5  |-  ( ( x  e.  R.  /\  u  e.  R. )  ->  ( x  .R  u
)  e.  R. )
34 addclsr 8721 . . . . 5  |-  ( ( ( y  .R  v
)  e.  R.  /\  ( x  .R  u
)  e.  R. )  ->  ( ( y  .R  v )  +R  (
x  .R  u )
)  e.  R. )
3532, 33, 34syl2anr 464 . . . 4  |-  ( ( ( x  e.  R.  /\  u  e.  R. )  /\  ( y  e.  R.  /\  v  e.  R. )
)  ->  ( (
y  .R  v )  +R  ( x  .R  u
) )  e.  R. )
3635an42s 800 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
y  .R  v )  +R  ( x  .R  u
) )  e.  R. )
3731, 36jca 518 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
( x  .R  v
)  +R  ( -1R 
.R  ( y  .R  u ) ) )  e.  R.  /\  (
( y  .R  v
)  +R  ( x  .R  u ) )  e.  R. ) )
38 distrsr 8729 . . . 4  |-  ( x  .R  ( z  +R  v ) )  =  ( ( x  .R  z )  +R  (
x  .R  v )
)
39 distrsr 8729 . . . . . 6  |-  ( y  .R  ( w  +R  u ) )  =  ( ( y  .R  w )  +R  (
y  .R  u )
)
4039oveq2i 5885 . . . . 5  |-  ( -1R 
.R  ( y  .R  ( w  +R  u
) ) )  =  ( -1R  .R  (
( y  .R  w
)  +R  ( y  .R  u ) ) )
41 distrsr 8729 . . . . 5  |-  ( -1R 
.R  ( ( y  .R  w )  +R  ( y  .R  u
) ) )  =  ( ( -1R  .R  ( y  .R  w
) )  +R  ( -1R  .R  ( y  .R  u ) ) )
4240, 41eqtri 2316 . . . 4  |-  ( -1R 
.R  ( y  .R  ( w  +R  u
) ) )  =  ( ( -1R  .R  ( y  .R  w
) )  +R  ( -1R  .R  ( y  .R  u ) ) )
4338, 42oveq12i 5886 . . 3  |-  ( ( x  .R  ( z  +R  v ) )  +R  ( -1R  .R  ( y  .R  (
w  +R  u ) ) ) )  =  ( ( ( x  .R  z )  +R  ( x  .R  v
) )  +R  (
( -1R  .R  (
y  .R  w )
)  +R  ( -1R 
.R  ( y  .R  u ) ) ) )
44 ovex 5899 . . . 4  |-  ( x  .R  z )  e. 
_V
45 ovex 5899 . . . 4  |-  ( x  .R  v )  e. 
_V
46 ovex 5899 . . . 4  |-  ( -1R 
.R  ( y  .R  w ) )  e. 
_V
47 addcomsr 8725 . . . 4  |-  ( f  +R  g )  =  ( g  +R  f
)
48 addasssr 8726 . . . 4  |-  ( ( f  +R  g )  +R  h )  =  ( f  +R  (
g  +R  h ) )
49 ovex 5899 . . . 4  |-  ( -1R 
.R  ( y  .R  u ) )  e. 
_V
5044, 45, 46, 47, 48, 49caov4 6067 . . 3  |-  ( ( ( x  .R  z
)  +R  ( x  .R  v ) )  +R  ( ( -1R 
.R  ( y  .R  w ) )  +R  ( -1R  .R  (
y  .R  u )
) ) )  =  ( ( ( x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) )  +R  (
( x  .R  v
)  +R  ( -1R 
.R  ( y  .R  u ) ) ) )
5143, 50eqtri 2316 . 2  |-  ( ( x  .R  ( z  +R  v ) )  +R  ( -1R  .R  ( y  .R  (
w  +R  u ) ) ) )  =  ( ( ( x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) )  +R  (
( x  .R  v
)  +R  ( -1R 
.R  ( y  .R  u ) ) ) )
52 distrsr 8729 . . . 4  |-  ( y  .R  ( z  +R  v ) )  =  ( ( y  .R  z )  +R  (
y  .R  v )
)
53 distrsr 8729 . . . 4  |-  ( x  .R  ( w  +R  u ) )  =  ( ( x  .R  w )  +R  (
x  .R  u )
)
5452, 53oveq12i 5886 . . 3  |-  ( ( y  .R  ( z  +R  v ) )  +R  ( x  .R  ( w  +R  u
) ) )  =  ( ( ( y  .R  z )  +R  ( y  .R  v
) )  +R  (
( x  .R  w
)  +R  ( x  .R  u ) ) )
55 ovex 5899 . . . 4  |-  ( y  .R  z )  e. 
_V
56 ovex 5899 . . . 4  |-  ( y  .R  v )  e. 
_V
57 ovex 5899 . . . 4  |-  ( x  .R  w )  e. 
_V
58 ovex 5899 . . . 4  |-  ( x  .R  u )  e. 
_V
5955, 56, 57, 47, 48, 58caov4 6067 . . 3  |-  ( ( ( y  .R  z
)  +R  ( y  .R  v ) )  +R  ( ( x  .R  w )  +R  ( x  .R  u
) ) )  =  ( ( ( y  .R  z )  +R  ( x  .R  w
) )  +R  (
( y  .R  v
)  +R  ( x  .R  u ) ) )
6054, 59eqtri 2316 . 2  |-  ( ( y  .R  ( z  +R  v ) )  +R  ( x  .R  ( w  +R  u
) ) )  =  ( ( ( y  .R  z )  +R  ( x  .R  w
) )  +R  (
( y  .R  v
)  +R  ( x  .R  u ) ) )
611, 2, 3, 4, 5, 6, 10, 24, 37, 51, 60ecovdi 6787 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  +  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    _E cep 4319   `'ccnv 4704  (class class class)co 5874   R.cnr 8505   -1Rcm1r 8508    +R cplr 8509    .R cmr 8510   CCcc 8751    + caddc 8756    x. cmul 8758
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-omul 6500  df-er 6676  df-ec 6678  df-qs 6682  df-ni 8512  df-pli 8513  df-mi 8514  df-lti 8515  df-plpq 8548  df-mpq 8549  df-ltpq 8550  df-enq 8551  df-nq 8552  df-erq 8553  df-plq 8554  df-mq 8555  df-1nq 8556  df-rq 8557  df-ltnq 8558  df-np 8621  df-1p 8622  df-plp 8623  df-mp 8624  df-ltp 8625  df-plpr 8695  df-mpr 8696  df-enr 8697  df-nr 8698  df-plr 8699  df-mr 8700  df-m1r 8704  df-c 8759  df-add 8764  df-mul 8765
  Copyright terms: Public domain W3C validator