Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axeuclid Unicode version

Theorem axeuclid 24593
Description: Euclid's axiom. Take an angle  B A C and a point  D between  B and  C. Now, if you extend the segment  A D to a point  T, then  T lies between two points  x and  y that lie on the angle. Axiom A10 of [Schwabhauser] p. 13. (Contributed by Scott Fenton, 9-Sep-2013.)
Assertion
Ref Expression
axeuclid  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  -> 
( ( D  Btwn  <. A ,  T >.  /\  D  Btwn  <. B ,  C >.  /\  A  =/=  D )  ->  E. x  e.  ( EE `  N
) E. y  e.  ( EE `  N
) ( B  Btwn  <. A ,  x >.  /\  C  Btwn  <. A , 
y >.  /\  T  Btwn  <.
x ,  y >.
) ) )
Distinct variable groups:    x, A, y    x, B, y    x, C, y    x, D, y   
x, N, y    x, T, y

Proof of Theorem axeuclid
Dummy variables  i  p  q  r  s  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl21 1033 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( ( p  e.  ( 0 [,] 1
)  /\  q  e.  ( 0 [,] 1
) )  /\  ( A. i  e.  (
1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) ) )  ->  A  e.  ( EE `  N ) )
2 simpl22 1034 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( ( p  e.  ( 0 [,] 1
)  /\  q  e.  ( 0 [,] 1
) )  /\  ( A. i  e.  (
1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) ) )  ->  B  e.  ( EE `  N ) )
31, 2jca 518 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( ( p  e.  ( 0 [,] 1
)  /\  q  e.  ( 0 [,] 1
) )  /\  ( A. i  e.  (
1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) ) )  ->  ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )
4 simpl23 1035 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( ( p  e.  ( 0 [,] 1
)  /\  q  e.  ( 0 [,] 1
) )  /\  ( A. i  e.  (
1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) ) )  ->  C  e.  ( EE `  N ) )
5 simpl3r 1011 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( ( p  e.  ( 0 [,] 1
)  /\  q  e.  ( 0 [,] 1
) )  /\  ( A. i  e.  (
1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) ) )  ->  T  e.  ( EE `  N ) )
64, 5jca 518 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( ( p  e.  ( 0 [,] 1
)  /\  q  e.  ( 0 [,] 1
) )  /\  ( A. i  e.  (
1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) ) )  ->  ( C  e.  ( EE `  N
)  /\  T  e.  ( EE `  N ) ) )
7 simprll 738 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( ( p  e.  ( 0 [,] 1
)  /\  q  e.  ( 0 [,] 1
) )  /\  ( A. i  e.  (
1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) ) )  ->  p  e.  ( 0 [,] 1
) )
8 simprlr 739 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( ( p  e.  ( 0 [,] 1
)  /\  q  e.  ( 0 [,] 1
) )  /\  ( A. i  e.  (
1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) ) )  ->  q  e.  ( 0 [,] 1
) )
9 simp21 988 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  ->  A  e.  ( EE `  N ) )
109ad2antrr 706 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  p  =  0 )  ->  A  e.  ( EE `  N ) )
11 fveecn 24532 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( A `  i )  e.  CC )
1210, 11sylan 457 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  p  =  0 )  /\  i  e.  ( 1 ... N ) )  ->  ( A `  i )  e.  CC )
13 simp3r 984 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  ->  T  e.  ( EE `  N ) )
1413ad2antrr 706 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  p  =  0 )  ->  T  e.  ( EE `  N ) )
15 fveecn 24532 . . . . . . . . . . . . . . . . . 18  |-  ( ( T  e.  ( EE
`  N )  /\  i  e.  ( 1 ... N ) )  ->  ( T `  i )  e.  CC )
1614, 15sylan 457 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  p  =  0 )  /\  i  e.  ( 1 ... N ) )  ->  ( T `  i )  e.  CC )
17 mulid2 8838 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A `  i )  e.  CC  ->  (
1  x.  ( A `
 i ) )  =  ( A `  i ) )
18 mul02 8992 . . . . . . . . . . . . . . . . . . 19  |-  ( ( T `  i )  e.  CC  ->  (
0  x.  ( T `
 i ) )  =  0 )
1917, 18oveqan12d 5879 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A `  i
)  e.  CC  /\  ( T `  i )  e.  CC )  -> 
( ( 1  x.  ( A `  i
) )  +  ( 0  x.  ( T `
 i ) ) )  =  ( ( A `  i )  +  0 ) )
20 addid1 8994 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A `  i )  e.  CC  ->  (
( A `  i
)  +  0 )  =  ( A `  i ) )
2120adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A `  i
)  e.  CC  /\  ( T `  i )  e.  CC )  -> 
( ( A `  i )  +  0 )  =  ( A `
 i ) )
2219, 21eqtrd 2317 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A `  i
)  e.  CC  /\  ( T `  i )  e.  CC )  -> 
( ( 1  x.  ( A `  i
) )  +  ( 0  x.  ( T `
 i ) ) )  =  ( A `
 i ) )
2312, 16, 22syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  p  =  0 )  /\  i  e.  ( 1 ... N ) )  ->  ( ( 1  x.  ( A `  i ) )  +  ( 0  x.  ( T `  i )
) )  =  ( A `  i ) )
24 oveq2 5868 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  =  0  ->  (
1  -  p )  =  ( 1  -  0 ) )
25 ax-1cn 8797 . . . . . . . . . . . . . . . . . . . . . 22  |-  1  e.  CC
2625subid1i 9120 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 1  -  0 )  =  1
2724, 26syl6eq 2333 . . . . . . . . . . . . . . . . . . . 20  |-  ( p  =  0  ->  (
1  -  p )  =  1 )
2827oveq1d 5875 . . . . . . . . . . . . . . . . . . 19  |-  ( p  =  0  ->  (
( 1  -  p
)  x.  ( A `
 i ) )  =  ( 1  x.  ( A `  i
) ) )
29 oveq1 5867 . . . . . . . . . . . . . . . . . . 19  |-  ( p  =  0  ->  (
p  x.  ( T `
 i ) )  =  ( 0  x.  ( T `  i
) ) )
3028, 29oveq12d 5878 . . . . . . . . . . . . . . . . . 18  |-  ( p  =  0  ->  (
( ( 1  -  p )  x.  ( A `  i )
)  +  ( p  x.  ( T `  i ) ) )  =  ( ( 1  x.  ( A `  i ) )  +  ( 0  x.  ( T `  i )
) ) )
3130eqeq1d 2293 . . . . . . . . . . . . . . . . 17  |-  ( p  =  0  ->  (
( ( ( 1  -  p )  x.  ( A `  i
) )  +  ( p  x.  ( T `
 i ) ) )  =  ( A `
 i )  <->  ( (
1  x.  ( A `
 i ) )  +  ( 0  x.  ( T `  i
) ) )  =  ( A `  i
) ) )
3231ad2antlr 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  p  =  0 )  /\  i  e.  ( 1 ... N ) )  ->  ( ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  =  ( A `  i
)  <->  ( ( 1  x.  ( A `  i ) )  +  ( 0  x.  ( T `  i )
) )  =  ( A `  i ) ) )
3323, 32mpbird 223 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  p  =  0 )  /\  i  e.  ( 1 ... N ) )  ->  ( ( ( 1  -  p )  x.  ( A `  i ) )  +  ( p  x.  ( T `  i )
) )  =  ( A `  i ) )
3433eqeq2d 2296 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  p  =  0 )  /\  i  e.  ( 1 ... N ) )  ->  ( ( D `
 i )  =  ( ( ( 1  -  p )  x.  ( A `  i
) )  +  ( p  x.  ( T `
 i ) ) )  <->  ( D `  i )  =  ( A `  i ) ) )
35 eqcom 2287 . . . . . . . . . . . . . 14  |-  ( ( D `  i )  =  ( A `  i )  <->  ( A `  i )  =  ( D `  i ) )
3634, 35syl6bb 252 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  p  =  0 )  /\  i  e.  ( 1 ... N ) )  ->  ( ( D `
 i )  =  ( ( ( 1  -  p )  x.  ( A `  i
) )  +  ( p  x.  ( T `
 i ) ) )  <->  ( A `  i )  =  ( D `  i ) ) )
3736biimpd 198 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  p  =  0 )  /\  i  e.  ( 1 ... N ) )  ->  ( ( D `
 i )  =  ( ( ( 1  -  p )  x.  ( A `  i
) )  +  ( p  x.  ( T `
 i ) ) )  ->  ( A `  i )  =  ( D `  i ) ) )
3837adantrd 454 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  p  =  0 )  /\  i  e.  ( 1 ... N ) )  ->  ( ( ( D `  i )  =  ( ( ( 1  -  p )  x.  ( A `  i ) )  +  ( p  x.  ( T `  i )
) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  -> 
( A `  i
)  =  ( D `
 i ) ) )
3938ralimdva 2623 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  p  =  0 )  -> 
( A. i  e.  ( 1 ... N
) ( ( D `
 i )  =  ( ( ( 1  -  p )  x.  ( A `  i
) )  +  ( p  x.  ( T `
 i ) ) )  /\  ( D `
 i )  =  ( ( ( 1  -  q )  x.  ( B `  i
) )  +  ( q  x.  ( C `
 i ) ) ) )  ->  A. i  e.  ( 1 ... N
) ( A `  i )  =  ( D `  i ) ) )
4039impancom 427 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) ) )  ->  ( p  =  0  ->  A. i  e.  ( 1 ... N
) ( A `  i )  =  ( D `  i ) ) )
419ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) ) )  ->  A  e.  ( EE `  N ) )
42 simp3l 983 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  ->  D  e.  ( EE `  N ) )
4342ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) ) )  ->  D  e.  ( EE `  N ) )
44 eqeefv 24533 . . . . . . . . . 10  |-  ( ( A  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( A  =  D  <->  A. i  e.  (
1 ... N ) ( A `  i )  =  ( D `  i ) ) )
4541, 43, 44syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) ) )  ->  ( A  =  D  <->  A. i  e.  ( 1 ... N ) ( A `  i
)  =  ( D `
 i ) ) )
4640, 45sylibrd 225 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) ) )  ->  ( p  =  0  ->  A  =  D ) )
4746necon3d 2486 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) ) )  ->  ( A  =/= 
D  ->  p  =/=  0 ) )
4847impr 602 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 ) ) )  /\  ( A. i  e.  (
1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) )  ->  p  =/=  0
)
4948anasss 628 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( ( p  e.  ( 0 [,] 1
)  /\  q  e.  ( 0 [,] 1
) )  /\  ( A. i  e.  (
1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) ) )  ->  p  =/=  0 )
50 eqtr2 2303 . . . . . . . 8  |-  ( ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  -> 
( ( ( 1  -  p )  x.  ( A `  i
) )  +  ( p  x.  ( T `
 i ) ) )  =  ( ( ( 1  -  q
)  x.  ( B `
 i ) )  +  ( q  x.  ( C `  i
) ) ) )
5150ralimi 2620 . . . . . . 7  |-  ( A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  ->  A. i  e.  (
1 ... N ) ( ( ( 1  -  p )  x.  ( A `  i )
)  +  ( p  x.  ( T `  i ) ) )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )
5251adantr 451 . . . . . 6  |-  ( ( A. i  e.  ( 1 ... N ) ( ( D `  i )  =  ( ( ( 1  -  p )  x.  ( A `  i )
)  +  ( p  x.  ( T `  i ) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i )
)  +  ( q  x.  ( C `  i ) ) ) )  /\  A  =/= 
D )  ->  A. i  e.  ( 1 ... N
) ( ( ( 1  -  p )  x.  ( A `  i ) )  +  ( p  x.  ( T `  i )
) )  =  ( ( ( 1  -  q )  x.  ( B `  i )
)  +  ( q  x.  ( C `  i ) ) ) )
5352ad2antll 709 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( ( p  e.  ( 0 [,] 1
)  /\  q  e.  ( 0 [,] 1
) )  /\  ( A. i  e.  (
1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) ) )  ->  A. i  e.  ( 1 ... N
) ( ( ( 1  -  p )  x.  ( A `  i ) )  +  ( p  x.  ( T `  i )
) )  =  ( ( ( 1  -  q )  x.  ( B `  i )
)  +  ( q  x.  ( C `  i ) ) ) )
54 axeuclidlem 24592 . . . . 5  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( p  e.  (
0 [,] 1 )  /\  q  e.  ( 0 [,] 1 )  /\  p  =/=  0
)  /\  A. i  e.  ( 1 ... N
) ( ( ( 1  -  p )  x.  ( A `  i ) )  +  ( p  x.  ( T `  i )
) )  =  ( ( ( 1  -  q )  x.  ( B `  i )
)  +  ( q  x.  ( C `  i ) ) ) )  ->  E. x  e.  ( EE `  N
) E. y  e.  ( EE `  N
) E. r  e.  ( 0 [,] 1
) E. s  e.  ( 0 [,] 1
) E. u  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( ( B `
 i )  =  ( ( ( 1  -  r )  x.  ( A `  i
) )  +  ( r  x.  ( x `
 i ) ) )  /\  ( C `
 i )  =  ( ( ( 1  -  s )  x.  ( A `  i
) )  +  ( s  x.  ( y `
 i ) ) )  /\  ( T `
 i )  =  ( ( ( 1  -  u )  x.  ( x `  i
) )  +  ( u  x.  ( y `
 i ) ) ) ) )
553, 6, 7, 8, 49, 53, 54syl231anc 1202 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( ( p  e.  ( 0 [,] 1
)  /\  q  e.  ( 0 [,] 1
) )  /\  ( A. i  e.  (
1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) ) )  ->  E. x  e.  ( EE `  N
) E. y  e.  ( EE `  N
) E. r  e.  ( 0 [,] 1
) E. s  e.  ( 0 [,] 1
) E. u  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( ( B `
 i )  =  ( ( ( 1  -  r )  x.  ( A `  i
) )  +  ( r  x.  ( x `
 i ) ) )  /\  ( C `
 i )  =  ( ( ( 1  -  s )  x.  ( A `  i
) )  +  ( s  x.  ( y `
 i ) ) )  /\  ( T `
 i )  =  ( ( ( 1  -  u )  x.  ( x `  i
) )  +  ( u  x.  ( y `
 i ) ) ) ) )
5655exp32 588 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  -> 
( ( p  e.  ( 0 [,] 1
)  /\  q  e.  ( 0 [,] 1
) )  ->  (
( A. i  e.  ( 1 ... N
) ( ( D `
 i )  =  ( ( ( 1  -  p )  x.  ( A `  i
) )  +  ( p  x.  ( T `
 i ) ) )  /\  ( D `
 i )  =  ( ( ( 1  -  q )  x.  ( B `  i
) )  +  ( q  x.  ( C `
 i ) ) ) )  /\  A  =/=  D )  ->  E. x  e.  ( EE `  N
) E. y  e.  ( EE `  N
) E. r  e.  ( 0 [,] 1
) E. s  e.  ( 0 [,] 1
) E. u  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( ( B `
 i )  =  ( ( ( 1  -  r )  x.  ( A `  i
) )  +  ( r  x.  ( x `
 i ) ) )  /\  ( C `
 i )  =  ( ( ( 1  -  s )  x.  ( A `  i
) )  +  ( s  x.  ( y `
 i ) ) )  /\  ( T `
 i )  =  ( ( ( 1  -  u )  x.  ( x `  i
) )  +  ( u  x.  ( y `
 i ) ) ) ) ) ) )
5756rexlimdvv 2675 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  -> 
( E. p  e.  ( 0 [,] 1
) E. q  e.  ( 0 [,] 1
) ( A. i  e.  ( 1 ... N
) ( ( D `
 i )  =  ( ( ( 1  -  p )  x.  ( A `  i
) )  +  ( p  x.  ( T `
 i ) ) )  /\  ( D `
 i )  =  ( ( ( 1  -  q )  x.  ( B `  i
) )  +  ( q  x.  ( C `
 i ) ) ) )  /\  A  =/=  D )  ->  E. x  e.  ( EE `  N
) E. y  e.  ( EE `  N
) E. r  e.  ( 0 [,] 1
) E. s  e.  ( 0 [,] 1
) E. u  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( ( B `
 i )  =  ( ( ( 1  -  r )  x.  ( A `  i
) )  +  ( r  x.  ( x `
 i ) ) )  /\  ( C `
 i )  =  ( ( ( 1  -  s )  x.  ( A `  i
) )  +  ( s  x.  ( y `
 i ) ) )  /\  ( T `
 i )  =  ( ( ( 1  -  u )  x.  ( x `  i
) )  +  ( u  x.  ( y `
 i ) ) ) ) ) )
58 brbtwn 24529 . . . . 5  |-  ( ( D  e.  ( EE
`  N )  /\  A  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) )  ->  ( D  Btwn  <. A ,  T >.  <->  E. p  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) ) ) )
5942, 9, 13, 58syl3anc 1182 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  -> 
( D  Btwn  <. A ,  T >. 
<->  E. p  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) ) ) )
60 simp22 989 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  ->  B  e.  ( EE `  N ) )
61 simp23 990 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  ->  C  e.  ( EE `  N ) )
62 brbtwn 24529 . . . . 5  |-  ( ( D  e.  ( EE
`  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( D  Btwn  <. B ,  C >.  <->  E. q  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i
)  =  ( ( ( 1  -  q
)  x.  ( B `
 i ) )  +  ( q  x.  ( C `  i
) ) ) ) )
6342, 60, 61, 62syl3anc 1182 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  -> 
( D  Btwn  <. B ,  C >. 
<->  E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i
)  =  ( ( ( 1  -  q
)  x.  ( B `
 i ) )  +  ( q  x.  ( C `  i
) ) ) ) )
6459, 633anbi12d 1253 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  -> 
( ( D  Btwn  <. A ,  T >.  /\  D  Btwn  <. B ,  C >.  /\  A  =/=  D )  <->  ( E. p  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( D `  i )  =  ( ( ( 1  -  p )  x.  ( A `  i )
)  +  ( p  x.  ( T `  i ) ) )  /\  E. q  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i )
)  +  ( q  x.  ( C `  i ) ) )  /\  A  =/=  D
) ) )
65 r19.26 2677 . . . . . . 7  |-  ( A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  <->  ( A. i  e.  ( 1 ... N ) ( D `  i )  =  ( ( ( 1  -  p )  x.  ( A `  i ) )  +  ( p  x.  ( T `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) ) )
66652rexbii 2572 . . . . . 6  |-  ( E. p  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  <->  E. p  e.  ( 0 [,] 1
) E. q  e.  ( 0 [,] 1
) ( A. i  e.  ( 1 ... N
) ( D `  i )  =  ( ( ( 1  -  p )  x.  ( A `  i )
)  +  ( p  x.  ( T `  i ) ) )  /\  A. i  e.  ( 1 ... N
) ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i )
)  +  ( q  x.  ( C `  i ) ) ) ) )
67 reeanv 2709 . . . . . 6  |-  ( E. p  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  A. i  e.  ( 1 ... N ) ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  <->  ( E. p  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i )  =  ( ( ( 1  -  p )  x.  ( A `  i ) )  +  ( p  x.  ( T `  i )
) )  /\  E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) ) )
6866, 67bitri 240 . . . . 5  |-  ( E. p  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  <->  ( E. p  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i )  =  ( ( ( 1  -  p )  x.  ( A `  i ) )  +  ( p  x.  ( T `  i )
) )  /\  E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) ) )
6968anbi1i 676 . . . 4  |-  ( ( E. p  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( D `  i )  =  ( ( ( 1  -  p )  x.  ( A `  i )
)  +  ( p  x.  ( T `  i ) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i )
)  +  ( q  x.  ( C `  i ) ) ) )  /\  A  =/= 
D )  <->  ( ( E. p  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) )
70 r19.41v 2695 . . . . . 6  |-  ( E. q  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( ( D `  i )  =  ( ( ( 1  -  p )  x.  ( A `  i )
)  +  ( p  x.  ( T `  i ) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i )
)  +  ( q  x.  ( C `  i ) ) ) )  /\  A  =/= 
D )  <->  ( E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) )
7170rexbii 2570 . . . . 5  |-  ( E. p  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( ( D `  i )  =  ( ( ( 1  -  p )  x.  ( A `  i )
)  +  ( p  x.  ( T `  i ) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i )
)  +  ( q  x.  ( C `  i ) ) ) )  /\  A  =/= 
D )  <->  E. p  e.  ( 0 [,] 1
) ( E. q  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( ( D `
 i )  =  ( ( ( 1  -  p )  x.  ( A `  i
) )  +  ( p  x.  ( T `
 i ) ) )  /\  ( D `
 i )  =  ( ( ( 1  -  q )  x.  ( B `  i
) )  +  ( q  x.  ( C `
 i ) ) ) )  /\  A  =/=  D ) )
72 r19.41v 2695 . . . . 5  |-  ( E. p  e.  ( 0 [,] 1 ) ( E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( D `  i )  =  ( ( ( 1  -  p )  x.  ( A `  i )
)  +  ( p  x.  ( T `  i ) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i )
)  +  ( q  x.  ( C `  i ) ) ) )  /\  A  =/= 
D )  <->  ( E. p  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) )
7371, 72bitri 240 . . . 4  |-  ( E. p  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( ( D `  i )  =  ( ( ( 1  -  p )  x.  ( A `  i )
)  +  ( p  x.  ( T `  i ) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i )
)  +  ( q  x.  ( C `  i ) ) ) )  /\  A  =/= 
D )  <->  ( E. p  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) )
74 df-3an 936 . . . 4  |-  ( ( E. p  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) )  /\  A  =/=  D )  <->  ( ( E. p  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i
)  =  ( ( ( 1  -  p
)  x.  ( A `
 i ) )  +  ( p  x.  ( T `  i
) ) )  /\  E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) ) )  /\  A  =/=  D ) )
7569, 73, 743bitr4i 268 . . 3  |-  ( E. p  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( ( D `  i )  =  ( ( ( 1  -  p )  x.  ( A `  i )
)  +  ( p  x.  ( T `  i ) ) )  /\  ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i )
)  +  ( q  x.  ( C `  i ) ) ) )  /\  A  =/= 
D )  <->  ( E. p  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i )  =  ( ( ( 1  -  p )  x.  ( A `  i ) )  +  ( p  x.  ( T `  i )
) )  /\  E. q  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( D `  i )  =  ( ( ( 1  -  q )  x.  ( B `  i ) )  +  ( q  x.  ( C `  i )
) )  /\  A  =/=  D ) )
7664, 75syl6bbr 254 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  -> 
( ( D  Btwn  <. A ,  T >.  /\  D  Btwn  <. B ,  C >.  /\  A  =/=  D )  <->  E. p  e.  ( 0 [,] 1 ) E. q  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N
) ( ( D `
 i )  =  ( ( ( 1  -  p )  x.  ( A `  i
) )  +  ( p  x.  ( T `
 i ) ) )  /\  ( D `
 i )  =  ( ( ( 1  -  q )  x.  ( B `  i
) )  +  ( q  x.  ( C `
 i ) ) ) )  /\  A  =/=  D ) ) )
77 simpl22 1034 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N ) )
78 simpl21 1033 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N ) )
79 simprl 732 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  x  e.  ( EE `  N ) )
80 brbtwn 24529 . . . . . 6  |-  ( ( B  e.  ( EE
`  N )  /\  A  e.  ( EE `  N )  /\  x  e.  ( EE `  N
) )  ->  ( B  Btwn  <. A ,  x >.  <->  E. r  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  r
)  x.  ( A `
 i ) )  +  ( r  x.  ( x `  i
) ) ) ) )
8177, 78, 79, 80syl3anc 1182 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  ( B  Btwn  <. A ,  x >.  <->  E. r  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  r )  x.  ( A `  i ) )  +  ( r  x.  (
x `  i )
) ) ) )
82 simpl23 1035 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N ) )
83 simprr 733 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  y  e.  ( EE `  N ) )
84 brbtwn 24529 . . . . . 6  |-  ( ( C  e.  ( EE
`  N )  /\  A  e.  ( EE `  N )  /\  y  e.  ( EE `  N
) )  ->  ( C  Btwn  <. A ,  y
>. 
<->  E. s  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( C `  i
)  =  ( ( ( 1  -  s
)  x.  ( A `
 i ) )  +  ( s  x.  ( y `  i
) ) ) ) )
8582, 78, 83, 84syl3anc 1182 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  ( C  Btwn  <. A ,  y >.  <->  E. s  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( C `  i )  =  ( ( ( 1  -  s )  x.  ( A `  i ) )  +  ( s  x.  (
y `  i )
) ) ) )
86 simpl3r 1011 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  T  e.  ( EE `  N ) )
87 brbtwn 24529 . . . . . 6  |-  ( ( T  e.  ( EE
`  N )  /\  x  e.  ( EE `  N )  /\  y  e.  ( EE `  N
) )  ->  ( T  Btwn  <. x ,  y
>. 
<->  E. u  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( T `  i
)  =  ( ( ( 1  -  u
)  x.  ( x `
 i ) )  +  ( u  x.  ( y `  i
) ) ) ) )
8886, 79, 83, 87syl3anc 1182 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  ( T  Btwn  <.
x ,  y >.  <->  E. u  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( T `  i )  =  ( ( ( 1  -  u )  x.  ( x `  i ) )  +  ( u  x.  (
y `  i )
) ) ) )
8981, 85, 883anbi123d 1252 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  ( ( B 
Btwn  <. A ,  x >.  /\  C  Btwn  <. A , 
y >.  /\  T  Btwn  <.
x ,  y >.
)  <->  ( E. r  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  r )  x.  ( A `  i )
)  +  ( r  x.  ( x `  i ) ) )  /\  E. s  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( C `  i )  =  ( ( ( 1  -  s )  x.  ( A `  i )
)  +  ( s  x.  ( y `  i ) ) )  /\  E. u  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( T `  i )  =  ( ( ( 1  -  u )  x.  (
x `  i )
)  +  ( u  x.  ( y `  i ) ) ) ) ) )
90 r19.26-3 2679 . . . . . . 7  |-  ( A. i  e.  ( 1 ... N ) ( ( B `  i
)  =  ( ( ( 1  -  r
)  x.  ( A `
 i ) )  +  ( r  x.  ( x `  i
) ) )  /\  ( C `  i )  =  ( ( ( 1  -  s )  x.  ( A `  i ) )  +  ( s  x.  (
y `  i )
) )  /\  ( T `  i )  =  ( ( ( 1  -  u )  x.  ( x `  i ) )  +  ( u  x.  (
y `  i )
) ) )  <->  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  r )  x.  ( A `  i ) )  +  ( r  x.  (
x `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( C `  i )  =  ( ( ( 1  -  s )  x.  ( A `  i ) )  +  ( s  x.  (
y `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( T `  i )  =  ( ( ( 1  -  u )  x.  ( x `  i ) )  +  ( u  x.  (
y `  i )
) ) ) )
9190rexbii 2570 . . . . . 6  |-  ( E. u  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( B `  i
)  =  ( ( ( 1  -  r
)  x.  ( A `
 i ) )  +  ( r  x.  ( x `  i
) ) )  /\  ( C `  i )  =  ( ( ( 1  -  s )  x.  ( A `  i ) )  +  ( s  x.  (
y `  i )
) )  /\  ( T `  i )  =  ( ( ( 1  -  u )  x.  ( x `  i ) )  +  ( u  x.  (
y `  i )
) ) )  <->  E. u  e.  ( 0 [,] 1
) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  r )  x.  ( A `  i )
)  +  ( r  x.  ( x `  i ) ) )  /\  A. i  e.  ( 1 ... N
) ( C `  i )  =  ( ( ( 1  -  s )  x.  ( A `  i )
)  +  ( s  x.  ( y `  i ) ) )  /\  A. i  e.  ( 1 ... N
) ( T `  i )  =  ( ( ( 1  -  u )  x.  (
x `  i )
)  +  ( u  x.  ( y `  i ) ) ) ) )
92912rexbii 2572 . . . . 5  |-  ( E. r  e.  ( 0 [,] 1 ) E. s  e.  ( 0 [,] 1 ) E. u  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( B `  i
)  =  ( ( ( 1  -  r
)  x.  ( A `
 i ) )  +  ( r  x.  ( x `  i
) ) )  /\  ( C `  i )  =  ( ( ( 1  -  s )  x.  ( A `  i ) )  +  ( s  x.  (
y `  i )
) )  /\  ( T `  i )  =  ( ( ( 1  -  u )  x.  ( x `  i ) )  +  ( u  x.  (
y `  i )
) ) )  <->  E. r  e.  ( 0 [,] 1
) E. s  e.  ( 0 [,] 1
) E. u  e.  ( 0 [,] 1
) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  r )  x.  ( A `  i )
)  +  ( r  x.  ( x `  i ) ) )  /\  A. i  e.  ( 1 ... N
) ( C `  i )  =  ( ( ( 1  -  s )  x.  ( A `  i )
)  +  ( s  x.  ( y `  i ) ) )  /\  A. i  e.  ( 1 ... N
) ( T `  i )  =  ( ( ( 1  -  u )  x.  (
x `  i )
)  +  ( u  x.  ( y `  i ) ) ) ) )
93 3reeanv 2710 . . . . 5  |-  ( E. r  e.  ( 0 [,] 1 ) E. s  e.  ( 0 [,] 1 ) E. u  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  r
)  x.  ( A `
 i ) )  +  ( r  x.  ( x `  i
) ) )  /\  A. i  e.  ( 1 ... N ) ( C `  i )  =  ( ( ( 1  -  s )  x.  ( A `  i ) )  +  ( s  x.  (
y `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( T `  i )  =  ( ( ( 1  -  u )  x.  ( x `  i ) )  +  ( u  x.  (
y `  i )
) ) )  <->  ( E. r  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  r )  x.  ( A `  i ) )  +  ( r  x.  (
x `  i )
) )  /\  E. s  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( C `  i )  =  ( ( ( 1  -  s )  x.  ( A `  i ) )  +  ( s  x.  (
y `  i )
) )  /\  E. u  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( T `  i )  =  ( ( ( 1  -  u )  x.  ( x `  i ) )  +  ( u  x.  (
y `  i )
) ) ) )
9492, 93bitri 240 . . . 4  |-  ( E. r  e.  ( 0 [,] 1 ) E. s  e.  ( 0 [,] 1 ) E. u  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( B `  i
)  =  ( ( ( 1  -  r
)  x.  ( A `
 i ) )  +  ( r  x.  ( x `  i
) ) )  /\  ( C `  i )  =  ( ( ( 1  -  s )  x.  ( A `  i ) )  +  ( s  x.  (
y `  i )
) )  /\  ( T `  i )  =  ( ( ( 1  -  u )  x.  ( x `  i ) )  +  ( u  x.  (
y `  i )
) ) )  <->  ( E. r  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  r )  x.  ( A `  i ) )  +  ( r  x.  (
x `  i )
) )  /\  E. s  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( C `  i )  =  ( ( ( 1  -  s )  x.  ( A `  i ) )  +  ( s  x.  (
y `  i )
) )  /\  E. u  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( T `  i )  =  ( ( ( 1  -  u )  x.  ( x `  i ) )  +  ( u  x.  (
y `  i )
) ) ) )
9589, 94syl6bbr 254 . . 3  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  /\  ( x  e.  ( EE `  N )  /\  y  e.  ( EE `  N ) ) )  ->  ( ( B 
Btwn  <. A ,  x >.  /\  C  Btwn  <. A , 
y >.  /\  T  Btwn  <.
x ,  y >.
)  <->  E. r  e.  ( 0 [,] 1 ) E. s  e.  ( 0 [,] 1 ) E. u  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( B `  i )  =  ( ( ( 1  -  r )  x.  ( A `  i )
)  +  ( r  x.  ( x `  i ) ) )  /\  ( C `  i )  =  ( ( ( 1  -  s )  x.  ( A `  i )
)  +  ( s  x.  ( y `  i ) ) )  /\  ( T `  i )  =  ( ( ( 1  -  u )  x.  (
x `  i )
)  +  ( u  x.  ( y `  i ) ) ) ) ) )
96952rexbidva 2586 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  -> 
( E. x  e.  ( EE `  N
) E. y  e.  ( EE `  N
) ( B  Btwn  <. A ,  x >.  /\  C  Btwn  <. A , 
y >.  /\  T  Btwn  <.
x ,  y >.
)  <->  E. x  e.  ( EE `  N ) E. y  e.  ( EE `  N ) E. r  e.  ( 0 [,] 1 ) E. s  e.  ( 0 [,] 1 ) E. u  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( ( B `  i )  =  ( ( ( 1  -  r )  x.  ( A `  i )
)  +  ( r  x.  ( x `  i ) ) )  /\  ( C `  i )  =  ( ( ( 1  -  s )  x.  ( A `  i )
)  +  ( s  x.  ( y `  i ) ) )  /\  ( T `  i )  =  ( ( ( 1  -  u )  x.  (
x `  i )
)  +  ( u  x.  ( y `  i ) ) ) ) ) )
9757, 76, 963imtr4d 259 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  T  e.  ( EE `  N
) ) )  -> 
( ( D  Btwn  <. A ,  T >.  /\  D  Btwn  <. B ,  C >.  /\  A  =/=  D )  ->  E. x  e.  ( EE `  N
) E. y  e.  ( EE `  N
) ( B  Btwn  <. A ,  x >.  /\  C  Btwn  <. A , 
y >.  /\  T  Btwn  <.
x ,  y >.
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1625    e. wcel 1686    =/= wne 2448   A.wral 2545   E.wrex 2546   <.cop 3645   class class class wbr 4025   ` cfv 5257  (class class class)co 5860   CCcc 8737   0cc0 8739   1c1 8740    + caddc 8742    x. cmul 8744    - cmin 9039   NNcn 9748   [,]cicc 10661   ...cfz 10784   EEcee 24518    Btwn cbtwn 24519
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-er 6662  df-map 6776  df-en 6866  df-dom 6867  df-sdom 6868  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-div 9426  df-nn 9749  df-z 10027  df-uz 10233  df-icc 10665  df-fz 10785  df-ee 24521  df-btwn 24522
  Copyright terms: Public domain W3C validator