MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axext2 Unicode version

Theorem axext2 2267
Description: The Axiom of Extensionality (ax-ext 2266) restated so that it postulates the existence of a set  z given two arbitrary sets 
x and  y. This way to express it follows the general idea of the other ZFC axioms, which is to postulate the existence of sets given other sets. (Contributed by NM, 28-Sep-2003.)
Assertion
Ref Expression
axext2  |-  E. z
( ( z  e.  x  <->  z  e.  y )  ->  x  =  y )
Distinct variable group:    x, y, z

Proof of Theorem axext2
StepHypRef Expression
1 ax-ext 2266 . 2  |-  ( A. z ( z  e.  x  <->  z  e.  y )  ->  x  =  y )
2 19.36v 1839 . 2  |-  ( E. z ( ( z  e.  x  <->  z  e.  y )  ->  x  =  y )  <->  ( A. z ( z  e.  x  <->  z  e.  y )  ->  x  =  y ) )
31, 2mpbir 200 1  |-  E. z
( ( z  e.  x  <->  z  e.  y )  ->  x  =  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   A.wal 1529   E.wex 1530    = wceq 1625    e. wcel 1686
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-6 1705  ax-11 1717  ax-ext 2266
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1531  df-nf 1534
  Copyright terms: Public domain W3C validator