Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axextprim Unicode version

Theorem axextprim 23451
Description: ax-ext 2265 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.)
Assertion
Ref Expression
axextprim  |-  -.  A. x  -.  ( ( x  e.  y  ->  x  e.  z )  ->  (
( x  e.  z  ->  x  e.  y )  ->  y  =  z ) )

Proof of Theorem axextprim
StepHypRef Expression
1 axextnd 8208 . 2  |-  E. x
( ( x  e.  y  <->  x  e.  z
)  ->  y  =  z )
2 dfbi2 611 . . . . . 6  |-  ( ( x  e.  y  <->  x  e.  z )  <->  ( (
x  e.  y  ->  x  e.  z )  /\  ( x  e.  z  ->  x  e.  y ) ) )
32imbi1i 317 . . . . 5  |-  ( ( ( x  e.  y  <-> 
x  e.  z )  ->  y  =  z )  <->  ( ( ( x  e.  y  ->  x  e.  z )  /\  ( x  e.  z  ->  x  e.  y ) )  ->  y  =  z ) )
4 impexp 435 . . . . 5  |-  ( ( ( ( x  e.  y  ->  x  e.  z )  /\  (
x  e.  z  ->  x  e.  y )
)  ->  y  =  z )  <->  ( (
x  e.  y  ->  x  e.  z )  ->  ( ( x  e.  z  ->  x  e.  y )  ->  y  =  z ) ) )
53, 4bitri 242 . . . 4  |-  ( ( ( x  e.  y  <-> 
x  e.  z )  ->  y  =  z )  <->  ( ( x  e.  y  ->  x  e.  z )  ->  (
( x  e.  z  ->  x  e.  y )  ->  y  =  z ) ) )
65exbii 1570 . . 3  |-  ( E. x ( ( x  e.  y  <->  x  e.  z )  ->  y  =  z )  <->  E. x
( ( x  e.  y  ->  x  e.  z )  ->  (
( x  e.  z  ->  x  e.  y )  ->  y  =  z ) ) )
7 df-ex 1530 . . 3  |-  ( E. x ( ( x  e.  y  ->  x  e.  z )  ->  (
( x  e.  z  ->  x  e.  y )  ->  y  =  z ) )  <->  -.  A. x  -.  ( ( x  e.  y  ->  x  e.  z )  ->  (
( x  e.  z  ->  x  e.  y )  ->  y  =  z ) ) )
86, 7bitri 242 . 2  |-  ( E. x ( ( x  e.  y  <->  x  e.  z )  ->  y  =  z )  <->  -.  A. x  -.  ( ( x  e.  y  ->  x  e.  z )  ->  (
( x  e.  z  ->  x  e.  y )  ->  y  =  z ) ) )
91, 8mpbi 201 1  |-  -.  A. x  -.  ( ( x  e.  y  ->  x  e.  z )  ->  (
( x  e.  z  ->  x  e.  y )  ->  y  =  z ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360   A.wal 1528   E.wex 1529
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265
This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-cleq 2277  df-clel 2280  df-nfc 2409
  Copyright terms: Public domain W3C validator