MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axgroth4 Structured version   Unicode version

Theorem axgroth4 8707
Description: Alternate version of the Tarski-Grothendieck Axiom. ax-ac 8339 is used to derive this version. (Contributed by NM, 16-Apr-2007.)
Assertion
Ref Expression
axgroth4  |-  E. y
( x  e.  y  /\  A. z  e.  y  E. v  e.  y  A. w ( w  C_  z  ->  w  e.  ( y  i^i  v ) )  /\  A. z ( z  C_  y  ->  ( ( y 
\  z )  ~<_  z  \/  z  e.  y ) ) )
Distinct variable group:    x, y, z, w, v

Proof of Theorem axgroth4
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 axgroth3 8706 . 2  |-  E. y
( x  e.  y  /\  A. z  e.  y  ( A. w
( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. u ( u  C_  z  ->  u  e.  w ) )  /\  A. z ( z  C_  y  ->  ( ( y  \  z
)  ~<_  z  \/  z  e.  y ) ) )
2 elequ2 1730 . . . . . . . . . 10  |-  ( w  =  v  ->  (
u  e.  w  <->  u  e.  v ) )
32imbi2d 308 . . . . . . . . 9  |-  ( w  =  v  ->  (
( u  C_  z  ->  u  e.  w )  <-> 
( u  C_  z  ->  u  e.  v ) ) )
43albidv 1635 . . . . . . . 8  |-  ( w  =  v  ->  ( A. u ( u  C_  z  ->  u  e.  w
)  <->  A. u ( u 
C_  z  ->  u  e.  v ) ) )
54cbvrexv 2933 . . . . . . 7  |-  ( E. w  e.  y  A. u ( u  C_  z  ->  u  e.  w
)  <->  E. v  e.  y 
A. u ( u 
C_  z  ->  u  e.  v ) )
65anbi2i 676 . . . . . 6  |-  ( ( A. w ( w 
C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. u ( u  C_  z  ->  u  e.  w
) )  <->  ( A. w ( w  C_  z  ->  w  e.  y )  /\  E. v  e.  y  A. u
( u  C_  z  ->  u  e.  v ) ) )
7 r19.42v 2862 . . . . . 6  |-  ( E. v  e.  y  ( A. w ( w 
C_  z  ->  w  e.  y )  /\  A. u ( u  C_  z  ->  u  e.  v ) )  <->  ( A. w ( w  C_  z  ->  w  e.  y )  /\  E. v  e.  y  A. u
( u  C_  z  ->  u  e.  v ) ) )
8 sseq1 3369 . . . . . . . . . . 11  |-  ( u  =  w  ->  (
u  C_  z  <->  w  C_  z
) )
9 elequ1 1728 . . . . . . . . . . 11  |-  ( u  =  w  ->  (
u  e.  v  <->  w  e.  v ) )
108, 9imbi12d 312 . . . . . . . . . 10  |-  ( u  =  w  ->  (
( u  C_  z  ->  u  e.  v )  <-> 
( w  C_  z  ->  w  e.  v ) ) )
1110cbvalv 1984 . . . . . . . . 9  |-  ( A. u ( u  C_  z  ->  u  e.  v )  <->  A. w ( w 
C_  z  ->  w  e.  v ) )
1211anbi2i 676 . . . . . . . 8  |-  ( ( A. w ( w 
C_  z  ->  w  e.  y )  /\  A. u ( u  C_  z  ->  u  e.  v ) )  <->  ( A. w ( w  C_  z  ->  w  e.  y )  /\  A. w
( w  C_  z  ->  w  e.  v ) ) )
13 19.26 1603 . . . . . . . 8  |-  ( A. w ( ( w 
C_  z  ->  w  e.  y )  /\  (
w  C_  z  ->  w  e.  v ) )  <-> 
( A. w ( w  C_  z  ->  w  e.  y )  /\  A. w ( w  C_  z  ->  w  e.  v ) ) )
14 pm4.76 837 . . . . . . . . . 10  |-  ( ( ( w  C_  z  ->  w  e.  y )  /\  ( w  C_  z  ->  w  e.  v ) )  <->  ( w  C_  z  ->  ( w  e.  y  /\  w  e.  v ) ) )
15 elin 3530 . . . . . . . . . . 11  |-  ( w  e.  ( y  i^i  v )  <->  ( w  e.  y  /\  w  e.  v ) )
1615imbi2i 304 . . . . . . . . . 10  |-  ( ( w  C_  z  ->  w  e.  ( y  i^i  v ) )  <->  ( w  C_  z  ->  ( w  e.  y  /\  w  e.  v ) ) )
1714, 16bitr4i 244 . . . . . . . . 9  |-  ( ( ( w  C_  z  ->  w  e.  y )  /\  ( w  C_  z  ->  w  e.  v ) )  <->  ( w  C_  z  ->  w  e.  ( y  i^i  v
) ) )
1817albii 1575 . . . . . . . 8  |-  ( A. w ( ( w 
C_  z  ->  w  e.  y )  /\  (
w  C_  z  ->  w  e.  v ) )  <->  A. w ( w  C_  z  ->  w  e.  ( y  i^i  v ) ) )
1912, 13, 183bitr2i 265 . . . . . . 7  |-  ( ( A. w ( w 
C_  z  ->  w  e.  y )  /\  A. u ( u  C_  z  ->  u  e.  v ) )  <->  A. w
( w  C_  z  ->  w  e.  ( y  i^i  v ) ) )
2019rexbii 2730 . . . . . 6  |-  ( E. v  e.  y  ( A. w ( w 
C_  z  ->  w  e.  y )  /\  A. u ( u  C_  z  ->  u  e.  v ) )  <->  E. v  e.  y  A. w
( w  C_  z  ->  w  e.  ( y  i^i  v ) ) )
216, 7, 203bitr2i 265 . . . . 5  |-  ( ( A. w ( w 
C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. u ( u  C_  z  ->  u  e.  w
) )  <->  E. v  e.  y  A. w
( w  C_  z  ->  w  e.  ( y  i^i  v ) ) )
2221ralbii 2729 . . . 4  |-  ( A. z  e.  y  ( A. w ( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. u
( u  C_  z  ->  u  e.  w ) )  <->  A. z  e.  y  E. v  e.  y 
A. w ( w 
C_  z  ->  w  e.  ( y  i^i  v
) ) )
23223anbi2i 1145 . . 3  |-  ( ( x  e.  y  /\  A. z  e.  y  ( A. w ( w 
C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. u ( u  C_  z  ->  u  e.  w
) )  /\  A. z ( z  C_  y  ->  ( ( y 
\  z )  ~<_  z  \/  z  e.  y ) ) )  <->  ( x  e.  y  /\  A. z  e.  y  E. v  e.  y  A. w
( w  C_  z  ->  w  e.  ( y  i^i  v ) )  /\  A. z ( z  C_  y  ->  ( ( y  \  z
)  ~<_  z  \/  z  e.  y ) ) ) )
2423exbii 1592 . 2  |-  ( E. y ( x  e.  y  /\  A. z  e.  y  ( A. w ( w  C_  z  ->  w  e.  y )  /\  E. w  e.  y  A. u
( u  C_  z  ->  u  e.  w ) )  /\  A. z
( z  C_  y  ->  ( ( y  \ 
z )  ~<_  z  \/  z  e.  y ) ) )  <->  E. y
( x  e.  y  /\  A. z  e.  y  E. v  e.  y  A. w ( w  C_  z  ->  w  e.  ( y  i^i  v ) )  /\  A. z ( z  C_  y  ->  ( ( y 
\  z )  ~<_  z  \/  z  e.  y ) ) ) )
251, 24mpbi 200 1  |-  E. y
( x  e.  y  /\  A. z  e.  y  E. v  e.  y  A. w ( w  C_  z  ->  w  e.  ( y  i^i  v ) )  /\  A. z ( z  C_  y  ->  ( ( y 
\  z )  ~<_  z  \/  z  e.  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    /\ wa 359    /\ w3a 936   A.wal 1549   E.wex 1550    e. wcel 1725   A.wral 2705   E.wrex 2706    \ cdif 3317    i^i cin 3319    C_ wss 3320   class class class wbr 4212    ~<_ cdom 7107
This theorem is referenced by:  grothprim  8709
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-reg 7560  ax-inf2 7596  ax-cc 8315  ax-groth 8698
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-oi 7479  df-card 7826  df-cda 8048
  Copyright terms: Public domain W3C validator