MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axi2m1 Unicode version

Theorem axi2m1 8781
Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom 12 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 8805. (Contributed by NM, 5-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axi2m1  |-  ( ( _i  x.  _i )  +  1 )  =  0

Proof of Theorem axi2m1
StepHypRef Expression
1 0r 8702 . . . . . 6  |-  0R  e.  R.
2 1sr 8703 . . . . . 6  |-  1R  e.  R.
3 mulcnsr 8758 . . . . . 6  |-  ( ( ( 0R  e.  R.  /\ 
1R  e.  R. )  /\  ( 0R  e.  R.  /\ 
1R  e.  R. )
)  ->  ( <. 0R ,  1R >.  x.  <. 0R ,  1R >. )  =  <. ( ( 0R 
.R  0R )  +R  ( -1R  .R  ( 1R  .R  1R ) ) ) ,  ( ( 1R  .R  0R )  +R  ( 0R  .R  1R ) ) >. )
41, 2, 1, 2, 3mp4an 654 . . . . 5  |-  ( <. 0R ,  1R >.  x.  <. 0R ,  1R >. )  =  <. ( ( 0R 
.R  0R )  +R  ( -1R  .R  ( 1R  .R  1R ) ) ) ,  ( ( 1R  .R  0R )  +R  ( 0R  .R  1R ) ) >.
5 00sr 8721 . . . . . . . . 9  |-  ( 0R  e.  R.  ->  ( 0R  .R  0R )  =  0R )
61, 5ax-mp 8 . . . . . . . 8  |-  ( 0R 
.R  0R )  =  0R
7 1idsr 8720 . . . . . . . . . . 11  |-  ( 1R  e.  R.  ->  ( 1R  .R  1R )  =  1R )
82, 7ax-mp 8 . . . . . . . . . 10  |-  ( 1R 
.R  1R )  =  1R
98oveq2i 5869 . . . . . . . . 9  |-  ( -1R 
.R  ( 1R  .R  1R ) )  =  ( -1R  .R  1R )
10 m1r 8704 . . . . . . . . . 10  |-  -1R  e.  R.
11 1idsr 8720 . . . . . . . . . 10  |-  ( -1R 
e.  R.  ->  ( -1R 
.R  1R )  =  -1R )
1210, 11ax-mp 8 . . . . . . . . 9  |-  ( -1R 
.R  1R )  =  -1R
139, 12eqtri 2303 . . . . . . . 8  |-  ( -1R 
.R  ( 1R  .R  1R ) )  =  -1R
146, 13oveq12i 5870 . . . . . . 7  |-  ( ( 0R  .R  0R )  +R  ( -1R  .R  ( 1R  .R  1R )
) )  =  ( 0R  +R  -1R )
15 addcomsr 8709 . . . . . . 7  |-  ( 0R 
+R  -1R )  =  ( -1R  +R  0R )
16 0idsr 8719 . . . . . . . 8  |-  ( -1R 
e.  R.  ->  ( -1R 
+R  0R )  =  -1R )
1710, 16ax-mp 8 . . . . . . 7  |-  ( -1R 
+R  0R )  =  -1R
1814, 15, 173eqtri 2307 . . . . . 6  |-  ( ( 0R  .R  0R )  +R  ( -1R  .R  ( 1R  .R  1R )
) )  =  -1R
19 00sr 8721 . . . . . . . . 9  |-  ( 1R  e.  R.  ->  ( 1R  .R  0R )  =  0R )
202, 19ax-mp 8 . . . . . . . 8  |-  ( 1R 
.R  0R )  =  0R
21 1idsr 8720 . . . . . . . . 9  |-  ( 0R  e.  R.  ->  ( 0R  .R  1R )  =  0R )
221, 21ax-mp 8 . . . . . . . 8  |-  ( 0R 
.R  1R )  =  0R
2320, 22oveq12i 5870 . . . . . . 7  |-  ( ( 1R  .R  0R )  +R  ( 0R  .R  1R ) )  =  ( 0R  +R  0R )
24 0idsr 8719 . . . . . . . 8  |-  ( 0R  e.  R.  ->  ( 0R  +R  0R )  =  0R )
251, 24ax-mp 8 . . . . . . 7  |-  ( 0R 
+R  0R )  =  0R
2623, 25eqtri 2303 . . . . . 6  |-  ( ( 1R  .R  0R )  +R  ( 0R  .R  1R ) )  =  0R
2718, 26opeq12i 3801 . . . . 5  |-  <. (
( 0R  .R  0R )  +R  ( -1R  .R  ( 1R  .R  1R )
) ) ,  ( ( 1R  .R  0R )  +R  ( 0R  .R  1R ) ) >.  =  <. -1R
,  0R >.
284, 27eqtri 2303 . . . 4  |-  ( <. 0R ,  1R >.  x.  <. 0R ,  1R >. )  =  <. -1R ,  0R >.
2928oveq1i 5868 . . 3  |-  ( (
<. 0R ,  1R >.  x. 
<. 0R ,  1R >. )  +  <. 1R ,  0R >. )  =  ( <. -1R ,  0R >.  +  <. 1R ,  0R >. )
30 addresr 8760 . . . 4  |-  ( ( -1R  e.  R.  /\  1R  e.  R. )  -> 
( <. -1R ,  0R >.  + 
<. 1R ,  0R >. )  =  <. ( -1R  +R  1R ) ,  0R >. )
3110, 2, 30mp2an 653 . . 3  |-  ( <. -1R ,  0R >.  +  <. 1R ,  0R >. )  =  <. ( -1R  +R  1R ) ,  0R >.
32 m1p1sr 8714 . . . 4  |-  ( -1R 
+R  1R )  =  0R
3332opeq1i 3799 . . 3  |-  <. ( -1R  +R  1R ) ,  0R >.  =  <. 0R ,  0R >.
3429, 31, 333eqtri 2307 . 2  |-  ( (
<. 0R ,  1R >.  x. 
<. 0R ,  1R >. )  +  <. 1R ,  0R >. )  =  <. 0R ,  0R >.
35 df-i 8746 . . . 4  |-  _i  =  <. 0R ,  1R >.
3635, 35oveq12i 5870 . . 3  |-  ( _i  x.  _i )  =  ( <. 0R ,  1R >.  x.  <. 0R ,  1R >. )
37 df-1 8745 . . 3  |-  1  =  <. 1R ,  0R >.
3836, 37oveq12i 5870 . 2  |-  ( ( _i  x.  _i )  +  1 )  =  ( ( <. 0R ,  1R >.  x.  <. 0R ,  1R >. )  +  <. 1R ,  0R >. )
39 df-0 8744 . 2  |-  0  =  <. 0R ,  0R >.
4034, 38, 393eqtr4i 2313 1  |-  ( ( _i  x.  _i )  +  1 )  =  0
Colors of variables: wff set class
Syntax hints:    = wceq 1623    e. wcel 1684   <.cop 3643  (class class class)co 5858   R.cnr 8489   0Rc0r 8490   1Rc1r 8491   -1Rcm1r 8492    +R cplr 8493    .R cmr 8494   0cc0 8737   1c1 8738   _ici 8739    + caddc 8740    x. cmul 8742
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-omul 6484  df-er 6660  df-ec 6662  df-qs 6666  df-ni 8496  df-pli 8497  df-mi 8498  df-lti 8499  df-plpq 8532  df-mpq 8533  df-ltpq 8534  df-enq 8535  df-nq 8536  df-erq 8537  df-plq 8538  df-mq 8539  df-1nq 8540  df-rq 8541  df-ltnq 8542  df-np 8605  df-1p 8606  df-plp 8607  df-mp 8608  df-ltp 8609  df-plpr 8679  df-mpr 8680  df-enr 8681  df-nr 8682  df-plr 8683  df-mr 8684  df-0r 8686  df-1r 8687  df-m1r 8688  df-c 8743  df-0 8744  df-1 8745  df-i 8746  df-add 8748  df-mul 8749
  Copyright terms: Public domain W3C validator