MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axi2m1 Unicode version

Theorem axi2m1 8967
Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom 12 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 8991. (Contributed by NM, 5-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axi2m1  |-  ( ( _i  x.  _i )  +  1 )  =  0

Proof of Theorem axi2m1
StepHypRef Expression
1 0r 8888 . . . . . 6  |-  0R  e.  R.
2 1sr 8889 . . . . . 6  |-  1R  e.  R.
3 mulcnsr 8944 . . . . . 6  |-  ( ( ( 0R  e.  R.  /\ 
1R  e.  R. )  /\  ( 0R  e.  R.  /\ 
1R  e.  R. )
)  ->  ( <. 0R ,  1R >.  x.  <. 0R ,  1R >. )  =  <. ( ( 0R 
.R  0R )  +R  ( -1R  .R  ( 1R  .R  1R ) ) ) ,  ( ( 1R  .R  0R )  +R  ( 0R  .R  1R ) ) >. )
41, 2, 1, 2, 3mp4an 655 . . . . 5  |-  ( <. 0R ,  1R >.  x.  <. 0R ,  1R >. )  =  <. ( ( 0R 
.R  0R )  +R  ( -1R  .R  ( 1R  .R  1R ) ) ) ,  ( ( 1R  .R  0R )  +R  ( 0R  .R  1R ) ) >.
5 00sr 8907 . . . . . . . . 9  |-  ( 0R  e.  R.  ->  ( 0R  .R  0R )  =  0R )
61, 5ax-mp 8 . . . . . . . 8  |-  ( 0R 
.R  0R )  =  0R
7 1idsr 8906 . . . . . . . . . . 11  |-  ( 1R  e.  R.  ->  ( 1R  .R  1R )  =  1R )
82, 7ax-mp 8 . . . . . . . . . 10  |-  ( 1R 
.R  1R )  =  1R
98oveq2i 6031 . . . . . . . . 9  |-  ( -1R 
.R  ( 1R  .R  1R ) )  =  ( -1R  .R  1R )
10 m1r 8890 . . . . . . . . . 10  |-  -1R  e.  R.
11 1idsr 8906 . . . . . . . . . 10  |-  ( -1R 
e.  R.  ->  ( -1R 
.R  1R )  =  -1R )
1210, 11ax-mp 8 . . . . . . . . 9  |-  ( -1R 
.R  1R )  =  -1R
139, 12eqtri 2407 . . . . . . . 8  |-  ( -1R 
.R  ( 1R  .R  1R ) )  =  -1R
146, 13oveq12i 6032 . . . . . . 7  |-  ( ( 0R  .R  0R )  +R  ( -1R  .R  ( 1R  .R  1R )
) )  =  ( 0R  +R  -1R )
15 addcomsr 8895 . . . . . . 7  |-  ( 0R 
+R  -1R )  =  ( -1R  +R  0R )
16 0idsr 8905 . . . . . . . 8  |-  ( -1R 
e.  R.  ->  ( -1R 
+R  0R )  =  -1R )
1710, 16ax-mp 8 . . . . . . 7  |-  ( -1R 
+R  0R )  =  -1R
1814, 15, 173eqtri 2411 . . . . . 6  |-  ( ( 0R  .R  0R )  +R  ( -1R  .R  ( 1R  .R  1R )
) )  =  -1R
19 00sr 8907 . . . . . . . . 9  |-  ( 1R  e.  R.  ->  ( 1R  .R  0R )  =  0R )
202, 19ax-mp 8 . . . . . . . 8  |-  ( 1R 
.R  0R )  =  0R
21 1idsr 8906 . . . . . . . . 9  |-  ( 0R  e.  R.  ->  ( 0R  .R  1R )  =  0R )
221, 21ax-mp 8 . . . . . . . 8  |-  ( 0R 
.R  1R )  =  0R
2320, 22oveq12i 6032 . . . . . . 7  |-  ( ( 1R  .R  0R )  +R  ( 0R  .R  1R ) )  =  ( 0R  +R  0R )
24 0idsr 8905 . . . . . . . 8  |-  ( 0R  e.  R.  ->  ( 0R  +R  0R )  =  0R )
251, 24ax-mp 8 . . . . . . 7  |-  ( 0R 
+R  0R )  =  0R
2623, 25eqtri 2407 . . . . . 6  |-  ( ( 1R  .R  0R )  +R  ( 0R  .R  1R ) )  =  0R
2718, 26opeq12i 3931 . . . . 5  |-  <. (
( 0R  .R  0R )  +R  ( -1R  .R  ( 1R  .R  1R )
) ) ,  ( ( 1R  .R  0R )  +R  ( 0R  .R  1R ) ) >.  =  <. -1R
,  0R >.
284, 27eqtri 2407 . . . 4  |-  ( <. 0R ,  1R >.  x.  <. 0R ,  1R >. )  =  <. -1R ,  0R >.
2928oveq1i 6030 . . 3  |-  ( (
<. 0R ,  1R >.  x. 
<. 0R ,  1R >. )  +  <. 1R ,  0R >. )  =  ( <. -1R ,  0R >.  +  <. 1R ,  0R >. )
30 addresr 8946 . . . 4  |-  ( ( -1R  e.  R.  /\  1R  e.  R. )  -> 
( <. -1R ,  0R >.  + 
<. 1R ,  0R >. )  =  <. ( -1R  +R  1R ) ,  0R >. )
3110, 2, 30mp2an 654 . . 3  |-  ( <. -1R ,  0R >.  +  <. 1R ,  0R >. )  =  <. ( -1R  +R  1R ) ,  0R >.
32 m1p1sr 8900 . . . 4  |-  ( -1R 
+R  1R )  =  0R
3332opeq1i 3929 . . 3  |-  <. ( -1R  +R  1R ) ,  0R >.  =  <. 0R ,  0R >.
3429, 31, 333eqtri 2411 . 2  |-  ( (
<. 0R ,  1R >.  x. 
<. 0R ,  1R >. )  +  <. 1R ,  0R >. )  =  <. 0R ,  0R >.
35 df-i 8932 . . . 4  |-  _i  =  <. 0R ,  1R >.
3635, 35oveq12i 6032 . . 3  |-  ( _i  x.  _i )  =  ( <. 0R ,  1R >.  x.  <. 0R ,  1R >. )
37 df-1 8931 . . 3  |-  1  =  <. 1R ,  0R >.
3836, 37oveq12i 6032 . 2  |-  ( ( _i  x.  _i )  +  1 )  =  ( ( <. 0R ,  1R >.  x.  <. 0R ,  1R >. )  +  <. 1R ,  0R >. )
39 df-0 8930 . 2  |-  0  =  <. 0R ,  0R >.
4034, 38, 393eqtr4i 2417 1  |-  ( ( _i  x.  _i )  +  1 )  =  0
Colors of variables: wff set class
Syntax hints:    = wceq 1649    e. wcel 1717   <.cop 3760  (class class class)co 6020   R.cnr 8675   0Rc0r 8676   1Rc1r 8677   -1Rcm1r 8678    +R cplr 8679    .R cmr 8680   0cc0 8923   1c1 8924   _ici 8925    + caddc 8926    x. cmul 8928
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-omul 6665  df-er 6841  df-ec 6843  df-qs 6847  df-ni 8682  df-pli 8683  df-mi 8684  df-lti 8685  df-plpq 8718  df-mpq 8719  df-ltpq 8720  df-enq 8721  df-nq 8722  df-erq 8723  df-plq 8724  df-mq 8725  df-1nq 8726  df-rq 8727  df-ltnq 8728  df-np 8791  df-1p 8792  df-plp 8793  df-mp 8794  df-ltp 8795  df-plpr 8865  df-mpr 8866  df-enr 8867  df-nr 8868  df-plr 8869  df-mr 8870  df-0r 8872  df-1r 8873  df-m1r 8874  df-c 8929  df-0 8930  df-1 8931  df-i 8932  df-add 8934  df-mul 8935
  Copyright terms: Public domain W3C validator