MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axicn Unicode version

Theorem axicn 8705
Description:  _i is a complex number. Axiom 3 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-icn 8729. (Contributed by NM, 23-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axicn  |-  _i  e.  CC

Proof of Theorem axicn
StepHypRef Expression
1 0r 8635 . 2  |-  0R  e.  R.
2 1sr 8636 . 2  |-  1R  e.  R.
3 df-i 8679 . . . 4  |-  _i  =  <. 0R ,  1R >.
43eleq1i 2319 . . 3  |-  ( _i  e.  CC  <->  <. 0R ,  1R >.  e.  CC )
5 opelcn 8684 . . 3  |-  ( <. 0R ,  1R >.  e.  CC  <->  ( 0R  e.  R.  /\  1R  e.  R. ) )
64, 5bitri 242 . 2  |-  ( _i  e.  CC  <->  ( 0R  e.  R.  /\  1R  e.  R. ) )
71, 2, 6mpbir2an 891 1  |-  _i  e.  CC
Colors of variables: wff set class
Syntax hints:    /\ wa 360    e. wcel 1621   <.cop 3584   R.cnr 8422   0Rc0r 8423   1Rc1r 8424   CCcc 8668   _ici 8672
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-inf2 7275
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-recs 6321  df-rdg 6356  df-1o 6412  df-oadd 6416  df-omul 6417  df-er 6593  df-ec 6595  df-qs 6599  df-ni 8429  df-pli 8430  df-mi 8431  df-lti 8432  df-plpq 8465  df-mpq 8466  df-ltpq 8467  df-enq 8468  df-nq 8469  df-erq 8470  df-plq 8471  df-mq 8472  df-1nq 8473  df-rq 8474  df-ltnq 8475  df-np 8538  df-1p 8539  df-plp 8540  df-enr 8614  df-nr 8615  df-0r 8619  df-1r 8620  df-c 8676  df-i 8679
  Copyright terms: Public domain W3C validator