Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axlowdim1 Structured version   Unicode version

Theorem axlowdim1 25891
Description: The lower dimensional axiom for one dimension. In any dimension, there are at least two distinct points. Theorem 3.13 of [Schwabhauser] p. 32, where it is derived from axlowdim2 25892. (Contributed by Scott Fenton, 22-Apr-2013.)
Assertion
Ref Expression
axlowdim1  |-  ( N  e.  NN  ->  E. x  e.  ( EE `  N
) E. y  e.  ( EE `  N
) x  =/=  y
)
Distinct variable group:    x, N, y

Proof of Theorem axlowdim1
StepHypRef Expression
1 1re 9083 . . . 4  |-  1  e.  RR
21fconst6 5626 . . 3  |-  ( ( 1 ... N )  X.  { 1 } ) : ( 1 ... N ) --> RR
3 elee 25826 . . 3  |-  ( N  e.  NN  ->  (
( ( 1 ... N )  X.  {
1 } )  e.  ( EE `  N
)  <->  ( ( 1 ... N )  X. 
{ 1 } ) : ( 1 ... N ) --> RR ) )
42, 3mpbiri 225 . 2  |-  ( N  e.  NN  ->  (
( 1 ... N
)  X.  { 1 } )  e.  ( EE `  N ) )
5 0re 9084 . . . 4  |-  0  e.  RR
65fconst6 5626 . . 3  |-  ( ( 1 ... N )  X.  { 0 } ) : ( 1 ... N ) --> RR
7 elee 25826 . . 3  |-  ( N  e.  NN  ->  (
( ( 1 ... N )  X.  {
0 } )  e.  ( EE `  N
)  <->  ( ( 1 ... N )  X. 
{ 0 } ) : ( 1 ... N ) --> RR ) )
86, 7mpbiri 225 . 2  |-  ( N  e.  NN  ->  (
( 1 ... N
)  X.  { 0 } )  e.  ( EE `  N ) )
9 ax-1ne0 9052 . . . . . . 7  |-  1  =/=  0
10 df-ne 2601 . . . . . . 7  |-  ( 1  =/=  0  <->  -.  1  =  0 )
119, 10mpbi 200 . . . . . 6  |-  -.  1  =  0
12 1ex 9079 . . . . . . 7  |-  1  e.  _V
1312sneqr 3959 . . . . . 6  |-  ( { 1 }  =  {
0 }  ->  1  =  0 )
1411, 13mto 169 . . . . 5  |-  -.  {
1 }  =  {
0 }
15 elnnuz 10515 . . . . . . . . 9  |-  ( N  e.  NN  <->  N  e.  ( ZZ>= `  1 )
)
16 eluzfz1 11057 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... N
) )
1715, 16sylbi 188 . . . . . . . 8  |-  ( N  e.  NN  ->  1  e.  ( 1 ... N
) )
18 ne0i 3627 . . . . . . . 8  |-  ( 1  e.  ( 1 ... N )  ->  (
1 ... N )  =/=  (/) )
1917, 18syl 16 . . . . . . 7  |-  ( N  e.  NN  ->  (
1 ... N )  =/=  (/) )
20 rnxp 5292 . . . . . . 7  |-  ( ( 1 ... N )  =/=  (/)  ->  ran  ( ( 1 ... N )  X.  { 1 } )  =  { 1 } )
2119, 20syl 16 . . . . . 6  |-  ( N  e.  NN  ->  ran  ( ( 1 ... N )  X.  {
1 } )  =  { 1 } )
22 rnxp 5292 . . . . . . 7  |-  ( ( 1 ... N )  =/=  (/)  ->  ran  ( ( 1 ... N )  X.  { 0 } )  =  { 0 } )
2319, 22syl 16 . . . . . 6  |-  ( N  e.  NN  ->  ran  ( ( 1 ... N )  X.  {
0 } )  =  { 0 } )
2421, 23eqeq12d 2450 . . . . 5  |-  ( N  e.  NN  ->  ( ran  ( ( 1 ... N )  X.  {
1 } )  =  ran  ( ( 1 ... N )  X. 
{ 0 } )  <->  { 1 }  =  { 0 } ) )
2514, 24mtbiri 295 . . . 4  |-  ( N  e.  NN  ->  -.  ran  ( ( 1 ... N )  X.  {
1 } )  =  ran  ( ( 1 ... N )  X. 
{ 0 } ) )
26 rneq 5088 . . . 4  |-  ( ( ( 1 ... N
)  X.  { 1 } )  =  ( ( 1 ... N
)  X.  { 0 } )  ->  ran  ( ( 1 ... N )  X.  {
1 } )  =  ran  ( ( 1 ... N )  X. 
{ 0 } ) )
2725, 26nsyl 115 . . 3  |-  ( N  e.  NN  ->  -.  ( ( 1 ... N )  X.  {
1 } )  =  ( ( 1 ... N )  X.  {
0 } ) )
2827neneqad 2669 . 2  |-  ( N  e.  NN  ->  (
( 1 ... N
)  X.  { 1 } )  =/=  (
( 1 ... N
)  X.  { 0 } ) )
29 neeq1 2607 . . 3  |-  ( x  =  ( ( 1 ... N )  X. 
{ 1 } )  ->  ( x  =/=  y  <->  ( ( 1 ... N )  X. 
{ 1 } )  =/=  y ) )
30 neeq2 2608 . . 3  |-  ( y  =  ( ( 1 ... N )  X. 
{ 0 } )  ->  ( ( ( 1 ... N )  X.  { 1 } )  =/=  y  <->  ( (
1 ... N )  X. 
{ 1 } )  =/=  ( ( 1 ... N )  X. 
{ 0 } ) ) )
3129, 30rspc2ev 3053 . 2  |-  ( ( ( ( 1 ... N )  X.  {
1 } )  e.  ( EE `  N
)  /\  ( (
1 ... N )  X. 
{ 0 } )  e.  ( EE `  N )  /\  (
( 1 ... N
)  X.  { 1 } )  =/=  (
( 1 ... N
)  X.  { 0 } ) )  ->  E. x  e.  ( EE `  N ) E. y  e.  ( EE
`  N ) x  =/=  y )
324, 8, 28, 31syl3anc 1184 1  |-  ( N  e.  NN  ->  E. x  e.  ( EE `  N
) E. y  e.  ( EE `  N
) x  =/=  y
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1652    e. wcel 1725    =/= wne 2599   E.wrex 2699   (/)c0 3621   {csn 3807    X. cxp 4869   ran crn 4872   -->wf 5443   ` cfv 5447  (class class class)co 6074   RRcr 8982   0cc0 8983   1c1 8984   NNcn 9993   ZZ>=cuz 10481   ...cfz 11036   EEcee 25820
This theorem is referenced by:  btwndiff  25954
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694  ax-cnex 9039  ax-resscn 9040  ax-1cn 9041  ax-icn 9042  ax-addcl 9043  ax-addrcl 9044  ax-mulcl 9045  ax-mulrcl 9046  ax-mulcom 9047  ax-addass 9048  ax-mulass 9049  ax-distr 9050  ax-i2m1 9051  ax-1ne0 9052  ax-1rid 9053  ax-rnegex 9054  ax-rrecex 9055  ax-cnre 9056  ax-pre-lttri 9057  ax-pre-lttrn 9058  ax-pre-ltadd 9059  ax-pre-mulgt0 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2703  df-rex 2704  df-reu 2705  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-pss 3329  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-tp 3815  df-op 3816  df-uni 4009  df-iun 4088  df-br 4206  df-opab 4260  df-mpt 4261  df-tr 4296  df-eprel 4487  df-id 4491  df-po 4496  df-so 4497  df-fr 4534  df-we 4536  df-ord 4577  df-on 4578  df-lim 4579  df-suc 4580  df-om 4839  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-ov 6077  df-oprab 6078  df-mpt2 6079  df-1st 6342  df-2nd 6343  df-riota 6542  df-recs 6626  df-rdg 6661  df-er 6898  df-map 7013  df-en 7103  df-dom 7104  df-sdom 7105  df-pnf 9115  df-mnf 9116  df-xr 9117  df-ltxr 9118  df-le 9119  df-sub 9286  df-neg 9287  df-nn 9994  df-z 10276  df-uz 10482  df-fz 11037  df-ee 25823
  Copyright terms: Public domain W3C validator