Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axlowdim1 Unicode version

Theorem axlowdim1 24659
Description: The lower dimensional axiom for one dimension. In any dimension, there are at least two distinct points. Theorem 3.13 of [Schwabhauser] p. 32, where it is derived from axlowdim2 24660. (Contributed by Scott Fenton, 22-Apr-2013.)
Assertion
Ref Expression
axlowdim1  |-  ( N  e.  NN  ->  E. x  e.  ( EE `  N
) E. y  e.  ( EE `  N
) x  =/=  y
)
Distinct variable group:    x, N, y

Proof of Theorem axlowdim1
StepHypRef Expression
1 1re 8853 . . . 4  |-  1  e.  RR
21fconst6 5447 . . 3  |-  ( ( 1 ... N )  X.  { 1 } ) : ( 1 ... N ) --> RR
3 elee 24594 . . 3  |-  ( N  e.  NN  ->  (
( ( 1 ... N )  X.  {
1 } )  e.  ( EE `  N
)  <->  ( ( 1 ... N )  X. 
{ 1 } ) : ( 1 ... N ) --> RR ) )
42, 3mpbiri 224 . 2  |-  ( N  e.  NN  ->  (
( 1 ... N
)  X.  { 1 } )  e.  ( EE `  N ) )
5 0re 8854 . . . 4  |-  0  e.  RR
65fconst6 5447 . . 3  |-  ( ( 1 ... N )  X.  { 0 } ) : ( 1 ... N ) --> RR
7 elee 24594 . . 3  |-  ( N  e.  NN  ->  (
( ( 1 ... N )  X.  {
0 } )  e.  ( EE `  N
)  <->  ( ( 1 ... N )  X. 
{ 0 } ) : ( 1 ... N ) --> RR ) )
86, 7mpbiri 224 . 2  |-  ( N  e.  NN  ->  (
( 1 ... N
)  X.  { 0 } )  e.  ( EE `  N ) )
9 ax-1ne0 8822 . . . . . . 7  |-  1  =/=  0
10 df-ne 2461 . . . . . . 7  |-  ( 1  =/=  0  <->  -.  1  =  0 )
119, 10mpbi 199 . . . . . 6  |-  -.  1  =  0
12 1ex 8849 . . . . . . 7  |-  1  e.  _V
1312sneqr 3796 . . . . . 6  |-  ( { 1 }  =  {
0 }  ->  1  =  0 )
1411, 13mto 167 . . . . 5  |-  -.  {
1 }  =  {
0 }
15 elnnuz 10280 . . . . . . . . 9  |-  ( N  e.  NN  <->  N  e.  ( ZZ>= `  1 )
)
16 eluzfz1 10819 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... N
) )
1715, 16sylbi 187 . . . . . . . 8  |-  ( N  e.  NN  ->  1  e.  ( 1 ... N
) )
18 ne0i 3474 . . . . . . . 8  |-  ( 1  e.  ( 1 ... N )  ->  (
1 ... N )  =/=  (/) )
1917, 18syl 15 . . . . . . 7  |-  ( N  e.  NN  ->  (
1 ... N )  =/=  (/) )
20 rnxp 5122 . . . . . . 7  |-  ( ( 1 ... N )  =/=  (/)  ->  ran  ( ( 1 ... N )  X.  { 1 } )  =  { 1 } )
2119, 20syl 15 . . . . . 6  |-  ( N  e.  NN  ->  ran  ( ( 1 ... N )  X.  {
1 } )  =  { 1 } )
22 rnxp 5122 . . . . . . 7  |-  ( ( 1 ... N )  =/=  (/)  ->  ran  ( ( 1 ... N )  X.  { 0 } )  =  { 0 } )
2319, 22syl 15 . . . . . 6  |-  ( N  e.  NN  ->  ran  ( ( 1 ... N )  X.  {
0 } )  =  { 0 } )
2421, 23eqeq12d 2310 . . . . 5  |-  ( N  e.  NN  ->  ( ran  ( ( 1 ... N )  X.  {
1 } )  =  ran  ( ( 1 ... N )  X. 
{ 0 } )  <->  { 1 }  =  { 0 } ) )
2514, 24mtbiri 294 . . . 4  |-  ( N  e.  NN  ->  -.  ran  ( ( 1 ... N )  X.  {
1 } )  =  ran  ( ( 1 ... N )  X. 
{ 0 } ) )
26 rneq 4920 . . . 4  |-  ( ( ( 1 ... N
)  X.  { 1 } )  =  ( ( 1 ... N
)  X.  { 0 } )  ->  ran  ( ( 1 ... N )  X.  {
1 } )  =  ran  ( ( 1 ... N )  X. 
{ 0 } ) )
2725, 26nsyl 113 . . 3  |-  ( N  e.  NN  ->  -.  ( ( 1 ... N )  X.  {
1 } )  =  ( ( 1 ... N )  X.  {
0 } ) )
28 df-ne 2461 . . 3  |-  ( ( ( 1 ... N
)  X.  { 1 } )  =/=  (
( 1 ... N
)  X.  { 0 } )  <->  -.  (
( 1 ... N
)  X.  { 1 } )  =  ( ( 1 ... N
)  X.  { 0 } ) )
2927, 28sylibr 203 . 2  |-  ( N  e.  NN  ->  (
( 1 ... N
)  X.  { 1 } )  =/=  (
( 1 ... N
)  X.  { 0 } ) )
30 neeq1 2467 . . 3  |-  ( x  =  ( ( 1 ... N )  X. 
{ 1 } )  ->  ( x  =/=  y  <->  ( ( 1 ... N )  X. 
{ 1 } )  =/=  y ) )
31 neeq2 2468 . . 3  |-  ( y  =  ( ( 1 ... N )  X. 
{ 0 } )  ->  ( ( ( 1 ... N )  X.  { 1 } )  =/=  y  <->  ( (
1 ... N )  X. 
{ 1 } )  =/=  ( ( 1 ... N )  X. 
{ 0 } ) ) )
3230, 31rspc2ev 2905 . 2  |-  ( ( ( ( 1 ... N )  X.  {
1 } )  e.  ( EE `  N
)  /\  ( (
1 ... N )  X. 
{ 0 } )  e.  ( EE `  N )  /\  (
( 1 ... N
)  X.  { 1 } )  =/=  (
( 1 ... N
)  X.  { 0 } ) )  ->  E. x  e.  ( EE `  N ) E. y  e.  ( EE
`  N ) x  =/=  y )
334, 8, 29, 32syl3anc 1182 1  |-  ( N  e.  NN  ->  E. x  e.  ( EE `  N
) E. y  e.  ( EE `  N
) x  =/=  y
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557   (/)c0 3468   {csn 3653    X. cxp 4703   ran crn 4706   -->wf 5267   ` cfv 5271  (class class class)co 5874   RRcr 8752   0cc0 8753   1c1 8754   NNcn 9762   ZZ>=cuz 10246   ...cfz 10798   EEcee 24588
This theorem is referenced by:  btwndiff  24722
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-z 10041  df-uz 10247  df-fz 10799  df-ee 24591
  Copyright terms: Public domain W3C validator