Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axlowdim2 Unicode version

Theorem axlowdim2 23998
Description: The lower two dimensional axiom. In any space where the dimension is greater than one, there are three non-colinear points. Axiom A8 of [Schwabhauser] p. 12. (Contributed by Scott Fenton, 15-Apr-2013.)
Assertion
Ref Expression
axlowdim2  |-  ( N  e.  ( ZZ>= `  2
)  ->  E. x  e.  ( EE `  N
) E. y  e.  ( EE `  N
) E. z  e.  ( EE `  N
)  -.  ( x 
Btwn  <. y ,  z
>.  \/  y  Btwn  <. z ,  x >.  \/  z  Btwn  <. x ,  y
>. ) )
Distinct variable group:    x, N, y, z

Proof of Theorem axlowdim2
StepHypRef Expression
1 0re 8834 . . 3  |-  0  e.  RR
21, 1axlowdimlem5 23984 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( { <. 1 ,  0 >. ,  <. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  e.  ( EE `  N ) )
3 1re 8833 . . 3  |-  1  e.  RR
43, 1axlowdimlem5 23984 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( { <. 1 ,  1 >. ,  <. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  e.  ( EE `  N ) )
51, 3axlowdimlem5 23984 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( { <. 1 ,  0 >. ,  <. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  e.  ( EE `  N ) )
6 eqid 2284 . . . 4  |-  ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  =  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )
7 eqid 2284 . . . 4  |-  ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  =  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )
8 eqid 2284 . . . 4  |-  ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  =  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )
96, 7, 8axlowdimlem6 23985 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  -.  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  \/  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) ,  ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. ) )
10 opeq2 3798 . . . . . . 7  |-  ( z  =  ( { <. 1 ,  0 >. , 
<. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  <. ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  z >.  =  <. ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. )
1110breq2d 4036 . . . . . 6  |-  ( z  =  ( { <. 1 ,  0 >. , 
<. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  z >.  <->  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. ) )
12 opeq1 3797 . . . . . . 7  |-  ( z  =  ( { <. 1 ,  0 >. , 
<. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  <. z ,  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) >.  =  <. ( { <. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. )
1312breq2d 4036 . . . . . 6  |-  ( z  =  ( { <. 1 ,  0 >. , 
<. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. z ,  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  <->  ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. ) )
14 breq1 4027 . . . . . 6  |-  ( z  =  ( { <. 1 ,  0 >. , 
<. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
z  Btwn  <. ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  <->  ( { <. 1 ,  0 >. , 
<. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. ) )
1511, 13, 143orbi123d 1251 . . . . 5  |-  ( z  =  ( { <. 1 ,  0 >. , 
<. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
( ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  z >.  \/  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
z ,  ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. )  <->  ( ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) ,  ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  \/  ( { <. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) ,  ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.
) ) )
1615notbid 285 . . . 4  |-  ( z  =  ( { <. 1 ,  0 >. , 
<. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  ( -.  ( ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  z >.  \/  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
z ,  ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. )  <->  -.  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  \/  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) ,  ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. ) ) )
1716rspcev 2885 . . 3  |-  ( ( ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  e.  ( EE
`  N )  /\  -.  ( ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  \/  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) ,  ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. ) )  ->  E. z  e.  ( EE `  N )  -.  ( ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  z >.  \/  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
z ,  ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. ) )
185, 9, 17syl2anc 642 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  E. z  e.  ( EE `  N
)  -.  ( ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) ,  z >.  \/  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. z ,  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) ,  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.
) )
19 breq1 4027 . . . . . 6  |-  ( x  =  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
x  Btwn  <. y ,  z >.  <->  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. y ,  z >. )
)
20 opeq2 3798 . . . . . . 7  |-  ( x  =  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  <. z ,  x >.  =  <. z ,  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) >. )
2120breq2d 4036 . . . . . 6  |-  ( x  =  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
y  Btwn  <. z ,  x >.  <->  y  Btwn  <. z ,  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) >. )
)
22 opeq1 3797 . . . . . . 7  |-  ( x  =  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  <. x ,  y >.  =  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  y >. )
2322breq2d 4036 . . . . . 6  |-  ( x  =  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
z  Btwn  <. x ,  y >.  <->  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  y >. ) )
2419, 21, 233orbi123d 1251 . . . . 5  |-  ( x  =  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
( x  Btwn  <. y ,  z >.  \/  y  Btwn  <. z ,  x >.  \/  z  Btwn  <. x ,  y >. )  <->  ( ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. y ,  z >.  \/  y  Btwn  <. z ,  ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  y >. ) ) )
2524notbid 285 . . . 4  |-  ( x  =  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  ( -.  ( x  Btwn  <. y ,  z >.  \/  y  Btwn  <. z ,  x >.  \/  z  Btwn  <. x ,  y >. )  <->  -.  ( ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. y ,  z >.  \/  y  Btwn  <. z ,  ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  y >. ) ) )
2625rexbidv 2565 . . 3  |-  ( x  =  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  ( E. z  e.  ( EE `  N )  -.  ( x  Btwn  <. y ,  z >.  \/  y  Btwn  <. z ,  x >.  \/  z  Btwn  <. x ,  y >. )  <->  E. z  e.  ( EE
`  N )  -.  ( ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. y ,  z >.  \/  y  Btwn  <. z ,  ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  y >. ) ) )
27 opeq1 3797 . . . . . . 7  |-  ( y  =  ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  <. y ,  z >.  =  <. ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  z >. )
2827breq2d 4036 . . . . . 6  |-  ( y  =  ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. y ,  z >.  <->  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  z >. ) )
29 breq1 4027 . . . . . 6  |-  ( y  =  ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
y  Btwn  <. z ,  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  <->  ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. z ,  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) >. )
)
30 opeq2 3798 . . . . . . 7  |-  ( y  =  ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  y >.  =  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. )
3130breq2d 4036 . . . . . 6  |-  ( y  =  ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
z  Btwn  <. ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  y >.  <->  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. ) )
3228, 29, 313orbi123d 1251 . . . . 5  |-  ( y  =  ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
( ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. y ,  z >.  \/  y  Btwn  <. z ,  ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  y >. )  <->  ( ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) ,  z >.  \/  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. z ,  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) ,  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.
) ) )
3332notbid 285 . . . 4  |-  ( y  =  ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  ( -.  ( ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. y ,  z >.  \/  y  Btwn  <. z ,  ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  y >. )  <->  -.  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  z >.  \/  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
z ,  ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. ) ) )
3433rexbidv 2565 . . 3  |-  ( y  =  ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  ( E. z  e.  ( EE `  N )  -.  ( ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. y ,  z >.  \/  y  Btwn  <. z ,  ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  y >. )  <->  E. z  e.  ( EE `  N
)  -.  ( ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) ,  z >.  \/  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. z ,  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) ,  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.
) ) )
3526, 34rspc2ev 2893 . 2  |-  ( ( ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  e.  ( EE
`  N )  /\  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  e.  ( EE `  N
)  /\  E. z  e.  ( EE `  N
)  -.  ( ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) ,  z >.  \/  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. z ,  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) ,  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.
) )  ->  E. x  e.  ( EE `  N
) E. y  e.  ( EE `  N
) E. z  e.  ( EE `  N
)  -.  ( x 
Btwn  <. y ,  z
>.  \/  y  Btwn  <. z ,  x >.  \/  z  Btwn  <. x ,  y
>. ) )
362, 4, 18, 35syl3anc 1182 1  |-  ( N  e.  ( ZZ>= `  2
)  ->  E. x  e.  ( EE `  N
) E. y  e.  ( EE `  N
) E. z  e.  ( EE `  N
)  -.  ( x 
Btwn  <. y ,  z
>.  \/  y  Btwn  <. z ,  x >.  \/  z  Btwn  <. x ,  y
>. ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ w3o 933    = wceq 1623    e. wcel 1685   E.wrex 2545    u. cun 3151   {csn 3641   {cpr 3642   <.cop 3644   class class class wbr 4024    X. cxp 4686   ` cfv 5221  (class class class)co 5820   0cc0 8733   1c1 8734   2c2 9791   3c3 9792   ZZ>=cuz 10226   ...cfz 10778   EEcee 23926    Btwn cbtwn 23927
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-er 6656  df-map 6770  df-en 6860  df-dom 6861  df-sdom 6862  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-n0 9962  df-z 10021  df-uz 10227  df-icc 10659  df-fz 10779  df-seq 11043  df-exp 11101  df-ee 23929  df-btwn 23930
  Copyright terms: Public domain W3C validator