Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axlowdim2 Unicode version

Theorem axlowdim2 23964
Description: The lower two dimensional axiom. In any space where the dimension is greater than one, there are three non-colinear points. Axiom A8 of [Schwabhauser] p. 12. (Contributed by Scott Fenton, 15-Apr-2013.)
Assertion
Ref Expression
axlowdim2  |-  ( N  e.  ( ZZ>= `  2
)  ->  E. x  e.  ( EE `  N
) E. y  e.  ( EE `  N
) E. z  e.  ( EE `  N
)  -.  ( x 
Btwn  <. y ,  z
>.  \/  y  Btwn  <. z ,  x >.  \/  z  Btwn  <. x ,  y
>. ) )
Distinct variable group:    x, N, y, z

Proof of Theorem axlowdim2
StepHypRef Expression
1 0re 8806 . . 3  |-  0  e.  RR
21, 1axlowdimlem5 23950 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( { <. 1 ,  0 >. ,  <. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  e.  ( EE `  N ) )
3 1re 8805 . . 3  |-  1  e.  RR
43, 1axlowdimlem5 23950 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( { <. 1 ,  1 >. ,  <. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  e.  ( EE `  N ) )
51, 3axlowdimlem5 23950 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( { <. 1 ,  0 >. ,  <. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  e.  ( EE `  N ) )
6 eqid 2258 . . . 4  |-  ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  =  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )
7 eqid 2258 . . . 4  |-  ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  =  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )
8 eqid 2258 . . . 4  |-  ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  =  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )
96, 7, 8axlowdimlem6 23951 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  -.  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  \/  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) ,  ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. ) )
10 opeq2 3771 . . . . . . 7  |-  ( z  =  ( { <. 1 ,  0 >. , 
<. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  <. ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  z >.  =  <. ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. )
1110breq2d 4009 . . . . . 6  |-  ( z  =  ( { <. 1 ,  0 >. , 
<. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  z >.  <->  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. ) )
12 opeq1 3770 . . . . . . 7  |-  ( z  =  ( { <. 1 ,  0 >. , 
<. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  <. z ,  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) >.  =  <. ( { <. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. )
1312breq2d 4009 . . . . . 6  |-  ( z  =  ( { <. 1 ,  0 >. , 
<. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. z ,  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  <->  ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. ) )
14 breq1 4000 . . . . . 6  |-  ( z  =  ( { <. 1 ,  0 >. , 
<. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
z  Btwn  <. ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  <->  ( { <. 1 ,  0 >. , 
<. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. ) )
1511, 13, 143orbi123d 1256 . . . . 5  |-  ( z  =  ( { <. 1 ,  0 >. , 
<. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
( ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  z >.  \/  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
z ,  ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. )  <->  ( ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) ,  ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  \/  ( { <. 1 ,  0
>. ,  <. 2 ,  1 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) ,  ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.
) ) )
1615notbid 287 . . . 4  |-  ( z  =  ( { <. 1 ,  0 >. , 
<. 2 ,  1
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  ( -.  ( ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  z >.  \/  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
z ,  ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. )  <->  -.  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  \/  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) ,  ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. ) ) )
1716rcla4ev 2859 . . 3  |-  ( ( ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  e.  ( EE
`  N )  /\  -.  ( ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  \/  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) ,  ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  ( { <. 1 ,  0 >. ,  <. 2 ,  1 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. ) )  ->  E. z  e.  ( EE `  N )  -.  ( ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  z >.  \/  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
z ,  ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. ) )
185, 9, 17syl2anc 645 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  E. z  e.  ( EE `  N
)  -.  ( ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) ,  z >.  \/  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. z ,  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) ,  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.
) )
19 breq1 4000 . . . . . 6  |-  ( x  =  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
x  Btwn  <. y ,  z >.  <->  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. y ,  z >. )
)
20 opeq2 3771 . . . . . . 7  |-  ( x  =  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  <. z ,  x >.  =  <. z ,  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) >. )
2120breq2d 4009 . . . . . 6  |-  ( x  =  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
y  Btwn  <. z ,  x >.  <->  y  Btwn  <. z ,  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) >. )
)
22 opeq1 3770 . . . . . . 7  |-  ( x  =  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  <. x ,  y >.  =  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  y >. )
2322breq2d 4009 . . . . . 6  |-  ( x  =  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
z  Btwn  <. x ,  y >.  <->  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  y >. ) )
2419, 21, 233orbi123d 1256 . . . . 5  |-  ( x  =  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
( x  Btwn  <. y ,  z >.  \/  y  Btwn  <. z ,  x >.  \/  z  Btwn  <. x ,  y >. )  <->  ( ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. y ,  z >.  \/  y  Btwn  <. z ,  ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  y >. ) ) )
2524notbid 287 . . . 4  |-  ( x  =  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  ( -.  ( x  Btwn  <. y ,  z >.  \/  y  Btwn  <. z ,  x >.  \/  z  Btwn  <. x ,  y >. )  <->  -.  ( ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. y ,  z >.  \/  y  Btwn  <. z ,  ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  y >. ) ) )
2625rexbidv 2539 . . 3  |-  ( x  =  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  ( E. z  e.  ( EE `  N )  -.  ( x  Btwn  <. y ,  z >.  \/  y  Btwn  <. z ,  x >.  \/  z  Btwn  <. x ,  y >. )  <->  E. z  e.  ( EE
`  N )  -.  ( ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. y ,  z >.  \/  y  Btwn  <. z ,  ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  y >. ) ) )
27 opeq1 3770 . . . . . . 7  |-  ( y  =  ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  <. y ,  z >.  =  <. ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  z >. )
2827breq2d 4009 . . . . . 6  |-  ( y  =  ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. y ,  z >.  <->  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  z >. ) )
29 breq1 4000 . . . . . 6  |-  ( y  =  ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
y  Btwn  <. z ,  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  <->  ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. z ,  ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) >. )
)
30 opeq2 3771 . . . . . . 7  |-  ( y  =  ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  y >.  =  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. )
3130breq2d 4009 . . . . . 6  |-  ( y  =  ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
z  Btwn  <. ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  y >.  <->  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. ) )
3228, 29, 313orbi123d 1256 . . . . 5  |-  ( y  =  ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  (
( ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. y ,  z >.  \/  y  Btwn  <. z ,  ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  y >. )  <->  ( ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) ,  z >.  \/  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. z ,  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) ,  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.
) ) )
3332notbid 287 . . . 4  |-  ( y  =  ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  ( -.  ( ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. y ,  z >.  \/  y  Btwn  <. z ,  ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  y >. )  <->  -.  (
( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. ( {
<. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  z >.  \/  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
z ,  ( {
<. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >. ) ) )
3433rexbidv 2539 . . 3  |-  ( y  =  ( { <. 1 ,  1 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  ->  ( E. z  e.  ( EE `  N )  -.  ( ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) )  Btwn  <. y ,  z >.  \/  y  Btwn  <. z ,  ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) ,  y >. )  <->  E. z  e.  ( EE `  N
)  -.  ( ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) ,  z >.  \/  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. z ,  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) ,  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.
) ) )
3526, 34rcla42ev 2867 . 2  |-  ( ( ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  e.  ( EE
`  N )  /\  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  e.  ( EE `  N
)  /\  E. z  e.  ( EE `  N
)  -.  ( ( { <. 1 ,  0
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) )  Btwn  <.
( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) ,  z >.  \/  ( { <. 1 ,  1 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) )  Btwn  <. z ,  ( { <. 1 ,  0 >. ,  <. 2 ,  0 >. }  u.  ( ( 3 ... N )  X. 
{ 0 } ) ) >.  \/  z  Btwn  <. ( { <. 1 ,  0 >. , 
<. 2 ,  0
>. }  u.  ( ( 3 ... N )  X.  { 0 } ) ) ,  ( { <. 1 ,  1
>. ,  <. 2 ,  0 >. }  u.  (
( 3 ... N
)  X.  { 0 } ) ) >.
) )  ->  E. x  e.  ( EE `  N
) E. y  e.  ( EE `  N
) E. z  e.  ( EE `  N
)  -.  ( x 
Btwn  <. y ,  z
>.  \/  y  Btwn  <. z ,  x >.  \/  z  Btwn  <. x ,  y
>. ) )
362, 4, 18, 35syl3anc 1187 1  |-  ( N  e.  ( ZZ>= `  2
)  ->  E. x  e.  ( EE `  N
) E. y  e.  ( EE `  N
) E. z  e.  ( EE `  N
)  -.  ( x 
Btwn  <. y ,  z
>.  \/  y  Btwn  <. z ,  x >.  \/  z  Btwn  <. x ,  y
>. ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    \/ w3o 938    = wceq 1619    e. wcel 1621   E.wrex 2519    u. cun 3125   {csn 3614   {cpr 3615   <.cop 3617   class class class wbr 3997    X. cxp 4659   ` cfv 4673  (class class class)co 5792   0cc0 8705   1c1 8706   2c2 9763   3c3 9764   ZZ>=cuz 10198   ...cfz 10749   EEcee 23892    Btwn cbtwn 23893
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-er 6628  df-map 6742  df-en 6832  df-dom 6833  df-sdom 6834  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-n0 9934  df-z 9993  df-uz 10199  df-icc 10630  df-fz 10750  df-seq 11014  df-exp 11072  df-ee 23895  df-btwn 23896
  Copyright terms: Public domain W3C validator