MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlttri Unicode version

Theorem axlttri 8827
Description: Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-lttri 8744 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
axlttri  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  -.  ( A  =  B  \/  B  <  A
) ) )

Proof of Theorem axlttri
StepHypRef Expression
1 ax-pre-lttri 8744 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <RR  B  <->  -.  ( A  =  B  \/  B  <RR  A ) ) )
2 ltxrlt 8826 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  A 
<RR  B ) )
3 ltxrlt 8826 . . . . 5  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <  A  <->  B 
<RR  A ) )
43ancoms 441 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  <  A  <->  B 
<RR  A ) )
54orbi2d 685 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  =  B  \/  B  < 
A )  <->  ( A  =  B  \/  B  <RR  A ) ) )
65notbid 287 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -.  ( A  =  B  \/  B  <  A )  <->  -.  ( A  =  B  \/  B  <RR  A ) ) )
71, 2, 63bitr4d 278 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  -.  ( A  =  B  \/  B  <  A
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1619    e. wcel 1621   class class class wbr 3963   RRcr 8669    <RR cltrr 8674    < clt 8800
This theorem is referenced by:  ltso  8836  leloe  8841  ltnsym  8852  ltadd2  8857  lttrid  8890  ltord1  9232  recgt0  9533  recgt0ii  9595  arch  9894  xrlttri  10405  subgmulg  14562  cosord  19821  logdivlt  19899
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-resscn 8727  ax-pre-lttri 8744
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-er 6593  df-en 6797  df-dom 6798  df-sdom 6799  df-pnf 8802  df-mnf 8803  df-ltxr 8805
  Copyright terms: Public domain W3C validator