MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axmulgt0 Unicode version

Theorem axmulgt0 8892
Description: The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-mulgt0 8809 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
axmulgt0  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  < 
A  /\  0  <  B )  ->  0  <  ( A  x.  B ) ) )

Proof of Theorem axmulgt0
StepHypRef Expression
1 ax-pre-mulgt0 8809 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  <RR  A  /\  0  <RR  B )  ->  0  <RR  ( A  x.  B ) ) )
2 0re 8833 . . . 4  |-  0  e.  RR
3 ltxrlt 8888 . . . 4  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  <->  0 
<RR  A ) )
42, 3mpan 653 . . 3  |-  ( A  e.  RR  ->  (
0  <  A  <->  0  <RR  A ) )
5 ltxrlt 8888 . . . 4  |-  ( ( 0  e.  RR  /\  B  e.  RR )  ->  ( 0  <  B  <->  0 
<RR  B ) )
62, 5mpan 653 . . 3  |-  ( B  e.  RR  ->  (
0  <  B  <->  0  <RR  B ) )
74, 6bi2anan9 845 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  < 
A  /\  0  <  B )  <->  ( 0  <RR  A  /\  0  <RR  B ) ) )
8 remulcl 8817 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
9 ltxrlt 8888 . . 3  |-  ( ( 0  e.  RR  /\  ( A  x.  B
)  e.  RR )  ->  ( 0  < 
( A  x.  B
)  <->  0  <RR  ( A  x.  B ) ) )
102, 8, 9sylancr 646 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <  ( A  x.  B )  <->  0 
<RR  ( A  x.  B
) ) )
111, 7, 103imtr4d 261 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  < 
A  /\  0  <  B )  ->  0  <  ( A  x.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    e. wcel 1685   class class class wbr 4024  (class class class)co 5819   RRcr 8731   0cc0 8732    <RR cltrr 8736    x. cmul 8737    < clt 8862
This theorem is referenced by:  mulgt0  8895  mulgt0i  8946  sin02gt0  12466  sinq12gt0  19869
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-i2m1 8800  ax-1ne0 8801  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-mulgt0 8809
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-er 6655  df-en 6859  df-dom 6860  df-sdom 6861  df-pnf 8864  df-mnf 8865  df-ltxr 8867
  Copyright terms: Public domain W3C validator