MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axmulgt0 Unicode version

Theorem axmulgt0 8865
Description: The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-mulgt0 8782 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
axmulgt0  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  < 
A  /\  0  <  B )  ->  0  <  ( A  x.  B ) ) )

Proof of Theorem axmulgt0
StepHypRef Expression
1 ax-pre-mulgt0 8782 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  <RR  A  /\  0  <RR  B )  ->  0  <RR  ( A  x.  B ) ) )
2 0re 8806 . . . 4  |-  0  e.  RR
3 ltxrlt 8861 . . . 4  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  <->  0 
<RR  A ) )
42, 3mpan 654 . . 3  |-  ( A  e.  RR  ->  (
0  <  A  <->  0  <RR  A ) )
5 ltxrlt 8861 . . . 4  |-  ( ( 0  e.  RR  /\  B  e.  RR )  ->  ( 0  <  B  <->  0 
<RR  B ) )
62, 5mpan 654 . . 3  |-  ( B  e.  RR  ->  (
0  <  B  <->  0  <RR  B ) )
74, 6bi2anan9 848 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  < 
A  /\  0  <  B )  <->  ( 0  <RR  A  /\  0  <RR  B ) ) )
8 remulcl 8790 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
9 ltxrlt 8861 . . 3  |-  ( ( 0  e.  RR  /\  ( A  x.  B
)  e.  RR )  ->  ( 0  < 
( A  x.  B
)  <->  0  <RR  ( A  x.  B ) ) )
102, 8, 9sylancr 647 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <  ( A  x.  B )  <->  0 
<RR  ( A  x.  B
) ) )
111, 7, 103imtr4d 261 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  < 
A  /\  0  <  B )  ->  0  <  ( A  x.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    e. wcel 1621   class class class wbr 3997  (class class class)co 5792   RRcr 8704   0cc0 8705    <RR cltrr 8709    x. cmul 8710    < clt 8835
This theorem is referenced by:  mulgt0  8868  mulgt0i  8919  sin02gt0  12434  sinq12gt0  19837
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-i2m1 8773  ax-1ne0 8774  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-mulgt0 8782
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-er 6628  df-en 6832  df-dom 6833  df-sdom 6834  df-pnf 8837  df-mnf 8838  df-ltxr 8840
  Copyright terms: Public domain W3C validator