MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axmulrcl Structured version   Unicode version

Theorem axmulrcl 9031
Description: Closure law for multiplication in the real subfield of complex numbers. Axiom 7 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulrcl 9055 be used later. Instead, in most cases use remulcl 9077. (New usage is discouraged.) (Contributed by NM, 31-Mar-1996.)
Assertion
Ref Expression
axmulrcl  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )

Proof of Theorem axmulrcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 9008 . 2  |-  ( A  e.  RR  <->  E. x  e.  R.  <. x ,  0R >.  =  A )
2 elreal 9008 . 2  |-  ( B  e.  RR  <->  E. y  e.  R.  <. y ,  0R >.  =  B )
3 oveq1 6090 . . 3  |-  ( <.
x ,  0R >.  =  A  ->  ( <. x ,  0R >.  x.  <. y ,  0R >. )  =  ( A  x.  <. y ,  0R >. ) )
43eleq1d 2504 . 2  |-  ( <.
x ,  0R >.  =  A  ->  ( ( <. x ,  0R >.  x. 
<. y ,  0R >. )  e.  RR  <->  ( A  x.  <. y ,  0R >. )  e.  RR ) )
5 oveq2 6091 . . 3  |-  ( <.
y ,  0R >.  =  B  ->  ( A  x.  <. y ,  0R >. )  =  ( A  x.  B ) )
65eleq1d 2504 . 2  |-  ( <.
y ,  0R >.  =  B  ->  ( ( A  x.  <. y ,  0R >. )  e.  RR  <->  ( A  x.  B )  e.  RR ) )
7 mulresr 9016 . . 3  |-  ( ( x  e.  R.  /\  y  e.  R. )  ->  ( <. x ,  0R >.  x.  <. y ,  0R >. )  =  <. (
x  .R  y ) ,  0R >. )
8 mulclsr 8961 . . . 4  |-  ( ( x  e.  R.  /\  y  e.  R. )  ->  ( x  .R  y
)  e.  R. )
9 opelreal 9007 . . . 4  |-  ( <.
( x  .R  y
) ,  0R >.  e.  RR  <->  ( x  .R  y )  e.  R. )
108, 9sylibr 205 . . 3  |-  ( ( x  e.  R.  /\  y  e.  R. )  -> 
<. ( x  .R  y
) ,  0R >.  e.  RR )
117, 10eqeltrd 2512 . 2  |-  ( ( x  e.  R.  /\  y  e.  R. )  ->  ( <. x ,  0R >.  x.  <. y ,  0R >. )  e.  RR )
121, 2, 4, 6, 112gencl 2987 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   <.cop 3819  (class class class)co 6083   R.cnr 8744   0Rc0r 8745    .R cmr 8749   RRcr 8991    x. cmul 8997
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-recs 6635  df-rdg 6670  df-1o 6726  df-oadd 6730  df-omul 6731  df-er 6907  df-ec 6909  df-qs 6913  df-ni 8751  df-pli 8752  df-mi 8753  df-lti 8754  df-plpq 8787  df-mpq 8788  df-ltpq 8789  df-enq 8790  df-nq 8791  df-erq 8792  df-plq 8793  df-mq 8794  df-1nq 8795  df-rq 8796  df-ltnq 8797  df-np 8860  df-1p 8861  df-plp 8862  df-mp 8863  df-ltp 8864  df-plpr 8934  df-mpr 8935  df-enr 8936  df-nr 8937  df-plr 8938  df-mr 8939  df-0r 8941  df-m1r 8943  df-c 8998  df-r 9002  df-mul 9004
  Copyright terms: Public domain W3C validator