Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpow3 Structured version   Unicode version

Theorem axpow3 4415
 Description: A variant of the Axiom of Power Sets ax-pow 4412. For any set , there exists a set whose members are exactly the subsets of i.e. the power set of . Axiom Pow of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.)
Assertion
Ref Expression
axpow3
Distinct variable group:   ,,

Proof of Theorem axpow3
StepHypRef Expression
1 axpow2 4414 . . 3
21bm1.3ii 4364 . 2
3 bicom 193 . . . 4
43albii 1576 . . 3
54exbii 1593 . 2
62, 5mpbir 202 1
 Colors of variables: wff set class Syntax hints:   wb 178  wal 1550  wex 1551   wss 3309 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-14 1732  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954  ax-ext 2424  ax-sep 4361  ax-pow 4412 This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1661  df-clab 2430  df-cleq 2436  df-clel 2439  df-in 3316  df-ss 3323
 Copyright terms: Public domain W3C validator