MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpr Unicode version

Theorem axpr 4343
Description: Unabbreviated version of the Axiom of Pairing of ZF set theory, derived as a theorem from the other axioms.

This theorem should not be referenced by any proof. Instead, use ax-pr 4344 below so that the uses of the Axiom of Pairing can be more easily identified. (Contributed by NM, 14-Nov-2006.) (New usage is discouraged.)

Assertion
Ref Expression
axpr  |-  E. z A. w ( ( w  =  x  \/  w  =  y )  ->  w  e.  z )
Distinct variable groups:    x, z, w    y, z, w

Proof of Theorem axpr
StepHypRef Expression
1 zfpair 4342 . . 3  |-  { x ,  y }  e.  _V
21isseti 2905 . 2  |-  E. z 
z  =  { x ,  y }
3 dfcleq 2381 . . 3  |-  ( z  =  { x ,  y }  <->  A. w
( w  e.  z  <-> 
w  e.  { x ,  y } ) )
4 vex 2902 . . . . . . 7  |-  w  e. 
_V
54elpr 3775 . . . . . 6  |-  ( w  e.  { x ,  y }  <->  ( w  =  x  \/  w  =  y ) )
65bibi2i 305 . . . . 5  |-  ( ( w  e.  z  <->  w  e.  { x ,  y } )  <->  ( w  e.  z  <->  ( w  =  x  \/  w  =  y ) ) )
7 bi2 190 . . . . 5  |-  ( ( w  e.  z  <->  ( w  =  x  \/  w  =  y ) )  ->  ( ( w  =  x  \/  w  =  y )  ->  w  e.  z )
)
86, 7sylbi 188 . . . 4  |-  ( ( w  e.  z  <->  w  e.  { x ,  y } )  ->  ( (
w  =  x  \/  w  =  y )  ->  w  e.  z ) )
98alimi 1565 . . 3  |-  ( A. w ( w  e.  z  <->  w  e.  { x ,  y } )  ->  A. w ( ( w  =  x  \/  w  =  y )  ->  w  e.  z ) )
103, 9sylbi 188 . 2  |-  ( z  =  { x ,  y }  ->  A. w
( ( w  =  x  \/  w  =  y )  ->  w  e.  z ) )
112, 10eximii 1584 1  |-  E. z A. w ( ( w  =  x  \/  w  =  y )  ->  w  e.  z )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358   A.wal 1546   E.wex 1547    = wceq 1649    e. wcel 1717   {cpr 3758
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-v 2901  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-pw 3744  df-sn 3763  df-pr 3764
  Copyright terms: Public domain W3C validator