MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpre-sup Unicode version

Theorem axpre-sup 8791
Description: A non-empty, bounded-above set of reals has a supremum. Axiom 22 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version with ordering on extended reals is axsup 8898. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-sup 8815. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-sup  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <RR  x )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
Distinct variable group:    x, y, z, A

Proof of Theorem axpre-sup
Dummy variables  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal2 8754 . . . . . . 7  |-  ( x  e.  RR  <->  ( ( 1st `  x )  e. 
R.  /\  x  =  <. ( 1st `  x
) ,  0R >. ) )
21simplbi 446 . . . . . 6  |-  ( x  e.  RR  ->  ( 1st `  x )  e. 
R. )
32adantl 452 . . . . 5  |-  ( ( ( A  C_  RR  /\  A  =/=  (/) )  /\  x  e.  RR )  ->  ( 1st `  x
)  e.  R. )
4 fo1st 6139 . . . . . . . . . . . 12  |-  1st : _V -onto-> _V
5 fof 5451 . . . . . . . . . . . 12  |-  ( 1st
: _V -onto-> _V  ->  1st
: _V --> _V )
6 ffn 5389 . . . . . . . . . . . 12  |-  ( 1st
: _V --> _V  ->  1st 
Fn  _V )
74, 5, 6mp2b 9 . . . . . . . . . . 11  |-  1st  Fn  _V
8 ssv 3198 . . . . . . . . . . 11  |-  A  C_  _V
9 fvelimab 5578 . . . . . . . . . . 11  |-  ( ( 1st  Fn  _V  /\  A  C_  _V )  -> 
( w  e.  ( 1st " A )  <->  E. y  e.  A  ( 1st `  y )  =  w ) )
107, 8, 9mp2an 653 . . . . . . . . . 10  |-  ( w  e.  ( 1st " A
)  <->  E. y  e.  A  ( 1st `  y )  =  w )
11 r19.29 2683 . . . . . . . . . . . 12  |-  ( ( A. y  e.  A  y  <RR  x  /\  E. y  e.  A  ( 1st `  y )  =  w )  ->  E. y  e.  A  ( y  <RR  x  /\  ( 1st `  y )  =  w ) )
12 ssel2 3175 . . . . . . . . . . . . . . . . 17  |-  ( ( A  C_  RR  /\  y  e.  A )  ->  y  e.  RR )
13 ltresr2 8763 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  RR  /\  x  e.  RR )  ->  ( y  <RR  x  <->  ( 1st `  y )  <R  ( 1st `  x ) ) )
14 breq1 4026 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1st `  y )  =  w  ->  (
( 1st `  y
)  <R  ( 1st `  x
)  <->  w  <R  ( 1st `  x ) ) )
1513, 14sylan9bb 680 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( y  e.  RR  /\  x  e.  RR )  /\  ( 1st `  y
)  =  w )  ->  ( y  <RR  x  <-> 
w  <R  ( 1st `  x
) ) )
1615biimpd 198 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  RR  /\  x  e.  RR )  /\  ( 1st `  y
)  =  w )  ->  ( y  <RR  x  ->  w  <R  ( 1st `  x ) ) )
1716exp31 587 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  RR  ->  (
x  e.  RR  ->  ( ( 1st `  y
)  =  w  -> 
( y  <RR  x  ->  w  <R  ( 1st `  x
) ) ) ) )
1812, 17syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( A  C_  RR  /\  y  e.  A )  ->  (
x  e.  RR  ->  ( ( 1st `  y
)  =  w  -> 
( y  <RR  x  ->  w  <R  ( 1st `  x
) ) ) ) )
1918imp4b 573 . . . . . . . . . . . . . . 15  |-  ( ( ( A  C_  RR  /\  y  e.  A )  /\  x  e.  RR )  ->  ( ( ( 1st `  y )  =  w  /\  y  <RR  x )  ->  w  <R  ( 1st `  x
) ) )
2019ancomsd 440 . . . . . . . . . . . . . 14  |-  ( ( ( A  C_  RR  /\  y  e.  A )  /\  x  e.  RR )  ->  ( ( y 
<RR  x  /\  ( 1st `  y )  =  w )  ->  w  <R  ( 1st `  x ) ) )
2120an32s 779 . . . . . . . . . . . . 13  |-  ( ( ( A  C_  RR  /\  x  e.  RR )  /\  y  e.  A
)  ->  ( (
y  <RR  x  /\  ( 1st `  y )  =  w )  ->  w  <R  ( 1st `  x
) ) )
2221rexlimdva 2667 . . . . . . . . . . . 12  |-  ( ( A  C_  RR  /\  x  e.  RR )  ->  ( E. y  e.  A  ( y  <RR  x  /\  ( 1st `  y )  =  w )  ->  w  <R  ( 1st `  x
) ) )
2311, 22syl5 28 . . . . . . . . . . 11  |-  ( ( A  C_  RR  /\  x  e.  RR )  ->  (
( A. y  e.  A  y  <RR  x  /\  E. y  e.  A  ( 1st `  y )  =  w )  ->  w  <R  ( 1st `  x
) ) )
2423exp3a 425 . . . . . . . . . 10  |-  ( ( A  C_  RR  /\  x  e.  RR )  ->  ( A. y  e.  A  y  <RR  x  ->  ( E. y  e.  A  ( 1st `  y )  =  w  ->  w  <R  ( 1st `  x
) ) ) )
2510, 24syl7bi 221 . . . . . . . . 9  |-  ( ( A  C_  RR  /\  x  e.  RR )  ->  ( A. y  e.  A  y  <RR  x  ->  (
w  e.  ( 1st " A )  ->  w  <R  ( 1st `  x
) ) ) )
2625impr 602 . . . . . . . 8  |-  ( ( A  C_  RR  /\  (
x  e.  RR  /\  A. y  e.  A  y 
<RR  x ) )  -> 
( w  e.  ( 1st " A )  ->  w  <R  ( 1st `  x ) ) )
2726adantlr 695 . . . . . . 7  |-  ( ( ( A  C_  RR  /\  A  =/=  (/) )  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <RR  x ) )  ->  ( w  e.  ( 1st " A
)  ->  w  <R  ( 1st `  x ) ) )
2827ralrimiv 2625 . . . . . 6  |-  ( ( ( A  C_  RR  /\  A  =/=  (/) )  /\  ( x  e.  RR  /\ 
A. y  e.  A  y  <RR  x ) )  ->  A. w  e.  ( 1st " A ) w  <R  ( 1st `  x ) )
2928expr 598 . . . . 5  |-  ( ( ( A  C_  RR  /\  A  =/=  (/) )  /\  x  e.  RR )  ->  ( A. y  e.  A  y  <RR  x  ->  A. w  e.  ( 1st " A ) w 
<R  ( 1st `  x
) ) )
30 breq2 4027 . . . . . . 7  |-  ( v  =  ( 1st `  x
)  ->  ( w  <R  v  <->  w  <R  ( 1st `  x ) ) )
3130ralbidv 2563 . . . . . 6  |-  ( v  =  ( 1st `  x
)  ->  ( A. w  e.  ( 1st " A ) w  <R  v  <->  A. w  e.  ( 1st " A ) w 
<R  ( 1st `  x
) ) )
3231rspcev 2884 . . . . 5  |-  ( ( ( 1st `  x
)  e.  R.  /\  A. w  e.  ( 1st " A ) w  <R  ( 1st `  x ) )  ->  E. v  e.  R.  A. w  e.  ( 1st " A
) w  <R  v
)
333, 29, 32ee12an 1353 . . . 4  |-  ( ( ( A  C_  RR  /\  A  =/=  (/) )  /\  x  e.  RR )  ->  ( A. y  e.  A  y  <RR  x  ->  E. v  e.  R.  A. w  e.  ( 1st " A ) w  <R  v ) )
3433rexlimdva 2667 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/) )  ->  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  ->  E. v  e.  R.  A. w  e.  ( 1st " A
) w  <R  v
) )
35 n0 3464 . . . . . 6  |-  ( A  =/=  (/)  <->  E. y  y  e.  A )
36 fnfvima 5756 . . . . . . . . 9  |-  ( ( 1st  Fn  _V  /\  A  C_  _V  /\  y  e.  A )  ->  ( 1st `  y )  e.  ( 1st " A
) )
377, 8, 36mp3an12 1267 . . . . . . . 8  |-  ( y  e.  A  ->  ( 1st `  y )  e.  ( 1st " A
) )
38 ne0i 3461 . . . . . . . 8  |-  ( ( 1st `  y )  e.  ( 1st " A
)  ->  ( 1st " A )  =/=  (/) )
3937, 38syl 15 . . . . . . 7  |-  ( y  e.  A  ->  ( 1st " A )  =/=  (/) )
4039exlimiv 1666 . . . . . 6  |-  ( E. y  y  e.  A  ->  ( 1st " A
)  =/=  (/) )
4135, 40sylbi 187 . . . . 5  |-  ( A  =/=  (/)  ->  ( 1st " A )  =/=  (/) )
42 supsr 8734 . . . . . 6  |-  ( ( ( 1st " A
)  =/=  (/)  /\  E. v  e.  R.  A. w  e.  ( 1st " A
) w  <R  v
)  ->  E. v  e.  R.  ( A. w  e.  ( 1st " A
)  -.  v  <R  w  /\  A. w  e. 
R.  ( w  <R  v  ->  E. u  e.  ( 1st " A ) w  <R  u )
) )
4342ex 423 . . . . 5  |-  ( ( 1st " A )  =/=  (/)  ->  ( E. v  e.  R.  A. w  e.  ( 1st " A
) w  <R  v  ->  E. v  e.  R.  ( A. w  e.  ( 1st " A )  -.  v  <R  w  /\  A. w  e.  R.  ( w  <R  v  ->  E. u  e.  ( 1st " A ) w 
<R  u ) ) ) )
4441, 43syl 15 . . . 4  |-  ( A  =/=  (/)  ->  ( E. v  e.  R.  A. w  e.  ( 1st " A
) w  <R  v  ->  E. v  e.  R.  ( A. w  e.  ( 1st " A )  -.  v  <R  w  /\  A. w  e.  R.  ( w  <R  v  ->  E. u  e.  ( 1st " A ) w 
<R  u ) ) ) )
4544adantl 452 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/) )  ->  ( E. v  e.  R.  A. w  e.  ( 1st " A ) w  <R  v  ->  E. v  e.  R.  ( A. w  e.  ( 1st " A )  -.  v  <R  w  /\  A. w  e.  R.  ( w  <R  v  ->  E. u  e.  ( 1st " A ) w 
<R  u ) ) ) )
46 breq2 4027 . . . . . . . . . . . 12  |-  ( w  =  ( 1st `  y
)  ->  ( v  <R  w  <->  v  <R  ( 1st `  y ) ) )
4746notbid 285 . . . . . . . . . . 11  |-  ( w  =  ( 1st `  y
)  ->  ( -.  v  <R  w  <->  -.  v  <R  ( 1st `  y
) ) )
4847rspccv 2881 . . . . . . . . . 10  |-  ( A. w  e.  ( 1st " A )  -.  v  <R  w  ->  ( ( 1st `  y )  e.  ( 1st " A
)  ->  -.  v  <R  ( 1st `  y
) ) )
4937, 48syl5com 26 . . . . . . . . 9  |-  ( y  e.  A  ->  ( A. w  e.  ( 1st " A )  -.  v  <R  w  ->  -.  v  <R  ( 1st `  y ) ) )
5049adantl 452 . . . . . . . 8  |-  ( ( A  C_  RR  /\  y  e.  A )  ->  ( A. w  e.  ( 1st " A )  -.  v  <R  w  ->  -.  v  <R  ( 1st `  y ) ) )
51 elreal2 8754 . . . . . . . . . . . . 13  |-  ( y  e.  RR  <->  ( ( 1st `  y )  e. 
R.  /\  y  =  <. ( 1st `  y
) ,  0R >. ) )
5251simprbi 450 . . . . . . . . . . . 12  |-  ( y  e.  RR  ->  y  =  <. ( 1st `  y
) ,  0R >. )
5352breq2d 4035 . . . . . . . . . . 11  |-  ( y  e.  RR  ->  ( <. v ,  0R >.  <RR  y 
<-> 
<. v ,  0R >.  <RR  <. ( 1st `  y
) ,  0R >. ) )
54 ltresr 8762 . . . . . . . . . . 11  |-  ( <.
v ,  0R >.  <RR  <. ( 1st `  y
) ,  0R >.  <->  v  <R  ( 1st `  y
) )
5553, 54syl6bb 252 . . . . . . . . . 10  |-  ( y  e.  RR  ->  ( <. v ,  0R >.  <RR  y 
<->  v  <R  ( 1st `  y ) ) )
5612, 55syl 15 . . . . . . . . 9  |-  ( ( A  C_  RR  /\  y  e.  A )  ->  ( <. v ,  0R >.  <RR  y 
<->  v  <R  ( 1st `  y ) ) )
5756notbid 285 . . . . . . . 8  |-  ( ( A  C_  RR  /\  y  e.  A )  ->  ( -.  <. v ,  0R >. 
<RR  y  <->  -.  v  <R  ( 1st `  y ) ) )
5850, 57sylibrd 225 . . . . . . 7  |-  ( ( A  C_  RR  /\  y  e.  A )  ->  ( A. w  e.  ( 1st " A )  -.  v  <R  w  ->  -. 
<. v ,  0R >.  <RR  y ) )
5958ralrimdva 2633 . . . . . 6  |-  ( A 
C_  RR  ->  ( A. w  e.  ( 1st " A )  -.  v  <R  w  ->  A. y  e.  A  -.  <. v ,  0R >.  <RR  y ) )
6059ad2antrr 706 . . . . 5  |-  ( ( ( A  C_  RR  /\  A  =/=  (/) )  /\  v  e.  R. )  ->  ( A. w  e.  ( 1st " A
)  -.  v  <R  w  ->  A. y  e.  A  -.  <. v ,  0R >. 
<RR  y ) )
6152breq1d 4033 . . . . . . . . . . . . . 14  |-  ( y  e.  RR  ->  (
y  <RR  <. v ,  0R >.  <->  <. ( 1st `  y
) ,  0R >.  <RR  <. v ,  0R >. ) )
62 ltresr 8762 . . . . . . . . . . . . . 14  |-  ( <.
( 1st `  y
) ,  0R >.  <RR  <. v ,  0R >.  <->  ( 1st `  y )  <R 
v )
6361, 62syl6bb 252 . . . . . . . . . . . . 13  |-  ( y  e.  RR  ->  (
y  <RR  <. v ,  0R >.  <-> 
( 1st `  y
)  <R  v ) )
6451simplbi 446 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR  ->  ( 1st `  y )  e. 
R. )
65 breq1 4026 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( 1st `  y
)  ->  ( w  <R  v  <->  ( 1st `  y
)  <R  v ) )
66 breq1 4026 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  ( 1st `  y
)  ->  ( w  <R  u  <->  ( 1st `  y
)  <R  u ) )
6766rexbidv 2564 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( 1st `  y
)  ->  ( E. u  e.  ( 1st " A ) w  <R  u  <->  E. u  e.  ( 1st " A ) ( 1st `  y ) 
<R  u ) )
6865, 67imbi12d 311 . . . . . . . . . . . . . . . 16  |-  ( w  =  ( 1st `  y
)  ->  ( (
w  <R  v  ->  E. u  e.  ( 1st " A
) w  <R  u
)  <->  ( ( 1st `  y )  <R  v  ->  E. u  e.  ( 1st " A ) ( 1st `  y
)  <R  u ) ) )
6968rspccv 2881 . . . . . . . . . . . . . . 15  |-  ( A. w  e.  R.  (
w  <R  v  ->  E. u  e.  ( 1st " A
) w  <R  u
)  ->  ( ( 1st `  y )  e. 
R.  ->  ( ( 1st `  y )  <R  v  ->  E. u  e.  ( 1st " A ) ( 1st `  y
)  <R  u ) ) )
7064, 69syl5 28 . . . . . . . . . . . . . 14  |-  ( A. w  e.  R.  (
w  <R  v  ->  E. u  e.  ( 1st " A
) w  <R  u
)  ->  ( y  e.  RR  ->  ( ( 1st `  y )  <R 
v  ->  E. u  e.  ( 1st " A
) ( 1st `  y
)  <R  u ) ) )
7170com3l 75 . . . . . . . . . . . . 13  |-  ( y  e.  RR  ->  (
( 1st `  y
)  <R  v  ->  ( A. w  e.  R.  ( w  <R  v  ->  E. u  e.  ( 1st " A ) w 
<R  u )  ->  E. u  e.  ( 1st " A
) ( 1st `  y
)  <R  u ) ) )
7263, 71sylbid 206 . . . . . . . . . . . 12  |-  ( y  e.  RR  ->  (
y  <RR  <. v ,  0R >.  ->  ( A. w  e.  R.  ( w  <R  v  ->  E. u  e.  ( 1st " A ) w  <R  u )  ->  E. u  e.  ( 1st " A ) ( 1st `  y
)  <R  u ) ) )
7372adantr 451 . . . . . . . . . . 11  |-  ( ( y  e.  RR  /\  A  C_  RR )  -> 
( y  <RR  <. v ,  0R >.  ->  ( A. w  e.  R.  (
w  <R  v  ->  E. u  e.  ( 1st " A
) w  <R  u
)  ->  E. u  e.  ( 1st " A
) ( 1st `  y
)  <R  u ) ) )
74 fvelimab 5578 . . . . . . . . . . . . . . . 16  |-  ( ( 1st  Fn  _V  /\  A  C_  _V )  -> 
( u  e.  ( 1st " A )  <->  E. z  e.  A  ( 1st `  z )  =  u ) )
757, 8, 74mp2an 653 . . . . . . . . . . . . . . 15  |-  ( u  e.  ( 1st " A
)  <->  E. z  e.  A  ( 1st `  z )  =  u )
76 ssel2 3175 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  C_  RR  /\  z  e.  A )  ->  z  e.  RR )
77 ltresr2 8763 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y  <RR  z  <->  ( 1st `  y )  <R  ( 1st `  z ) ) )
7876, 77sylan2 460 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  RR  /\  ( A  C_  RR  /\  z  e.  A )
)  ->  ( y  <RR  z  <->  ( 1st `  y
)  <R  ( 1st `  z
) ) )
79 breq2 4027 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1st `  z )  =  u  ->  (
( 1st `  y
)  <R  ( 1st `  z
)  <->  ( 1st `  y
)  <R  u ) )
8078, 79sylan9bb 680 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  e.  RR  /\  ( A  C_  RR  /\  z  e.  A ) )  /\  ( 1st `  z )  =  u )  ->  ( y  <RR  z  <->  ( 1st `  y
)  <R  u ) )
8180exbiri 605 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  RR  /\  ( A  C_  RR  /\  z  e.  A )
)  ->  ( ( 1st `  z )  =  u  ->  ( ( 1st `  y )  <R  u  ->  y  <RR  z ) ) )
8281expr 598 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  RR  /\  A  C_  RR )  -> 
( z  e.  A  ->  ( ( 1st `  z
)  =  u  -> 
( ( 1st `  y
)  <R  u  ->  y  <RR  z ) ) ) )
8382com4r 80 . . . . . . . . . . . . . . . . 17  |-  ( ( 1st `  y ) 
<R  u  ->  ( ( y  e.  RR  /\  A  C_  RR )  -> 
( z  e.  A  ->  ( ( 1st `  z
)  =  u  -> 
y  <RR  z ) ) ) )
8483imp 418 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1st `  y
)  <R  u  /\  (
y  e.  RR  /\  A  C_  RR ) )  ->  ( z  e.  A  ->  ( ( 1st `  z )  =  u  ->  y  <RR  z ) ) )
8584reximdvai 2653 . . . . . . . . . . . . . . 15  |-  ( ( ( 1st `  y
)  <R  u  /\  (
y  e.  RR  /\  A  C_  RR ) )  ->  ( E. z  e.  A  ( 1st `  z )  =  u  ->  E. z  e.  A  y  <RR  z ) )
8675, 85syl5bi 208 . . . . . . . . . . . . . 14  |-  ( ( ( 1st `  y
)  <R  u  /\  (
y  e.  RR  /\  A  C_  RR ) )  ->  ( u  e.  ( 1st " A
)  ->  E. z  e.  A  y  <RR  z ) )
8786expcom 424 . . . . . . . . . . . . 13  |-  ( ( y  e.  RR  /\  A  C_  RR )  -> 
( ( 1st `  y
)  <R  u  ->  (
u  e.  ( 1st " A )  ->  E. z  e.  A  y  <RR  z ) ) )
8887com23 72 . . . . . . . . . . . 12  |-  ( ( y  e.  RR  /\  A  C_  RR )  -> 
( u  e.  ( 1st " A )  ->  ( ( 1st `  y )  <R  u  ->  E. z  e.  A  y  <RR  z ) ) )
8988rexlimdv 2666 . . . . . . . . . . 11  |-  ( ( y  e.  RR  /\  A  C_  RR )  -> 
( E. u  e.  ( 1st " A
) ( 1st `  y
)  <R  u  ->  E. z  e.  A  y  <RR  z ) )
9073, 89syl6d 64 . . . . . . . . . 10  |-  ( ( y  e.  RR  /\  A  C_  RR )  -> 
( y  <RR  <. v ,  0R >.  ->  ( A. w  e.  R.  (
w  <R  v  ->  E. u  e.  ( 1st " A
) w  <R  u
)  ->  E. z  e.  A  y  <RR  z ) ) )
9190com23 72 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  A  C_  RR )  -> 
( A. w  e. 
R.  ( w  <R  v  ->  E. u  e.  ( 1st " A ) w  <R  u )  ->  ( y  <RR  <. v ,  0R >.  ->  E. z  e.  A  y  <RR  z ) ) )
9291ex 423 . . . . . . . 8  |-  ( y  e.  RR  ->  ( A  C_  RR  ->  ( A. w  e.  R.  ( w  <R  v  ->  E. u  e.  ( 1st " A ) w 
<R  u )  ->  (
y  <RR  <. v ,  0R >.  ->  E. z  e.  A  y  <RR  z ) ) ) )
9392com3l 75 . . . . . . 7  |-  ( A 
C_  RR  ->  ( A. w  e.  R.  (
w  <R  v  ->  E. u  e.  ( 1st " A
) w  <R  u
)  ->  ( y  e.  RR  ->  ( y  <RR 
<. v ,  0R >.  ->  E. z  e.  A  y  <RR  z ) ) ) )
9493ad2antrr 706 . . . . . 6  |-  ( ( ( A  C_  RR  /\  A  =/=  (/) )  /\  v  e.  R. )  ->  ( A. w  e. 
R.  ( w  <R  v  ->  E. u  e.  ( 1st " A ) w  <R  u )  ->  ( y  e.  RR  ->  ( y  <RR  <. v ,  0R >.  ->  E. z  e.  A  y  <RR  z ) ) ) )
9594ralrimdv 2632 . . . . 5  |-  ( ( ( A  C_  RR  /\  A  =/=  (/) )  /\  v  e.  R. )  ->  ( A. w  e. 
R.  ( w  <R  v  ->  E. u  e.  ( 1st " A ) w  <R  u )  ->  A. y  e.  RR  ( y  <RR  <. v ,  0R >.  ->  E. z  e.  A  y  <RR  z ) ) )
96 opelreal 8752 . . . . . . . 8  |-  ( <.
v ,  0R >.  e.  RR  <->  v  e.  R. )
9796biimpri 197 . . . . . . 7  |-  ( v  e.  R.  ->  <. v ,  0R >.  e.  RR )
9897adantl 452 . . . . . 6  |-  ( ( ( A  C_  RR  /\  A  =/=  (/) )  /\  v  e.  R. )  -> 
<. v ,  0R >.  e.  RR )
99 breq1 4026 . . . . . . . . . . 11  |-  ( x  =  <. v ,  0R >.  ->  ( x  <RR  y  <->  <. v ,  0R >.  <RR  y ) )
10099notbid 285 . . . . . . . . . 10  |-  ( x  =  <. v ,  0R >.  ->  ( -.  x  <RR  y  <->  -.  <. v ,  0R >.  <RR  y ) )
101100ralbidv 2563 . . . . . . . . 9  |-  ( x  =  <. v ,  0R >.  ->  ( A. y  e.  A  -.  x  <RR  y  <->  A. y  e.  A  -.  <. v ,  0R >. 
<RR  y ) )
102 breq2 4027 . . . . . . . . . . 11  |-  ( x  =  <. v ,  0R >.  ->  ( y  <RR  x  <-> 
y  <RR  <. v ,  0R >. ) )
103102imbi1d 308 . . . . . . . . . 10  |-  ( x  =  <. v ,  0R >.  ->  ( ( y 
<RR  x  ->  E. z  e.  A  y  <RR  z )  <->  ( y  <RR  <.
v ,  0R >.  ->  E. z  e.  A  y  <RR  z ) ) )
104103ralbidv 2563 . . . . . . . . 9  |-  ( x  =  <. v ,  0R >.  ->  ( A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z )  <->  A. y  e.  RR  ( y  <RR  <.
v ,  0R >.  ->  E. z  e.  A  y  <RR  z ) ) )
105101, 104anbi12d 691 . . . . . . . 8  |-  ( x  =  <. v ,  0R >.  ->  ( ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. z  e.  A  y  <RR  z ) )  <->  ( A. y  e.  A  -.  <.
v ,  0R >.  <RR  y  /\  A. y  e.  RR  ( y  <RR  <.
v ,  0R >.  ->  E. z  e.  A  y  <RR  z ) ) ) )
106105rspcev 2884 . . . . . . 7  |-  ( (
<. v ,  0R >.  e.  RR  /\  ( A. y  e.  A  -.  <.
v ,  0R >.  <RR  y  /\  A. y  e.  RR  ( y  <RR  <.
v ,  0R >.  ->  E. z  e.  A  y  <RR  z ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
107106ex 423 . . . . . 6  |-  ( <.
v ,  0R >.  e.  RR  ->  ( ( A. y  e.  A  -.  <. v ,  0R >. 
<RR  y  /\  A. y  e.  RR  ( y  <RR  <.
v ,  0R >.  ->  E. z  e.  A  y  <RR  z ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) ) )
10898, 107syl 15 . . . . 5  |-  ( ( ( A  C_  RR  /\  A  =/=  (/) )  /\  v  e.  R. )  ->  ( ( A. y  e.  A  -.  <. v ,  0R >.  <RR  y  /\  A. y  e.  RR  (
y  <RR  <. v ,  0R >.  ->  E. z  e.  A  y  <RR  z ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) ) )
10960, 95, 108syl2and 469 . . . 4  |-  ( ( ( A  C_  RR  /\  A  =/=  (/) )  /\  v  e.  R. )  ->  ( ( A. w  e.  ( 1st " A
)  -.  v  <R  w  /\  A. w  e. 
R.  ( w  <R  v  ->  E. u  e.  ( 1st " A ) w  <R  u )
)  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) ) )
110109rexlimdva 2667 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/) )  ->  ( E. v  e.  R.  ( A. w  e.  ( 1st " A )  -.  v  <R  w  /\  A. w  e.  R.  ( w  <R  v  ->  E. u  e.  ( 1st " A ) w 
<R  u ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) ) )
11134, 45, 1103syld 51 . 2  |-  ( ( A  C_  RR  /\  A  =/=  (/) )  ->  ( E. x  e.  RR  A. y  e.  A  y 
<RR  x  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) ) )
1121113impia 1148 1  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <RR  x )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1528    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   _Vcvv 2788    C_ wss 3152   (/)c0 3455   <.cop 3643   class class class wbr 4023   "cima 4692    Fn wfn 5250   -->wf 5251   -onto->wfo 5253   ` cfv 5255   1stc1st 6120   R.cnr 8489   0Rc0r 8490    <R cltr 8495   RRcr 8736    <RR cltrr 8741
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-omul 6484  df-er 6660  df-ec 6662  df-qs 6666  df-ni 8496  df-pli 8497  df-mi 8498  df-lti 8499  df-plpq 8532  df-mpq 8533  df-ltpq 8534  df-enq 8535  df-nq 8536  df-erq 8537  df-plq 8538  df-mq 8539  df-1nq 8540  df-rq 8541  df-ltnq 8542  df-np 8605  df-1p 8606  df-plp 8607  df-mp 8608  df-ltp 8609  df-plpr 8679  df-mpr 8680  df-enr 8681  df-nr 8682  df-plr 8683  df-mr 8684  df-ltr 8685  df-0r 8686  df-1r 8687  df-m1r 8688  df-r 8747  df-lt 8750
  Copyright terms: Public domain W3C validator