Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axregprim Structured version   Unicode version

Theorem axregprim 25156
Description: ax-reg 7562 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.)
Assertion
Ref Expression
axregprim  |-  ( x  e.  y  ->  -.  A. x ( x  e.  y  ->  -.  A. z
( z  e.  x  ->  -.  z  e.  y ) ) )

Proof of Theorem axregprim
StepHypRef Expression
1 axregnd 8481 . 2  |-  ( x  e.  y  ->  E. x
( x  e.  y  /\  A. z ( z  e.  x  ->  -.  z  e.  y
) ) )
2 df-an 362 . . . 4  |-  ( ( x  e.  y  /\  A. z ( z  e.  x  ->  -.  z  e.  y ) )  <->  -.  (
x  e.  y  ->  -.  A. z ( z  e.  x  ->  -.  z  e.  y )
) )
32exbii 1593 . . 3  |-  ( E. x ( x  e.  y  /\  A. z
( z  e.  x  ->  -.  z  e.  y ) )  <->  E. x  -.  ( x  e.  y  ->  -.  A. z
( z  e.  x  ->  -.  z  e.  y ) ) )
4 exnal 1584 . . 3  |-  ( E. x  -.  ( x  e.  y  ->  -.  A. z ( z  e.  x  ->  -.  z  e.  y ) )  <->  -.  A. x
( x  e.  y  ->  -.  A. z
( z  e.  x  ->  -.  z  e.  y ) ) )
53, 4bitri 242 . 2  |-  ( E. x ( x  e.  y  /\  A. z
( z  e.  x  ->  -.  z  e.  y ) )  <->  -.  A. x
( x  e.  y  ->  -.  A. z
( z  e.  x  ->  -.  z  e.  y ) ) )
61, 5sylib 190 1  |-  ( x  e.  y  ->  -.  A. x ( x  e.  y  ->  -.  A. z
( z  e.  x  ->  -.  z  e.  y ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360   A.wal 1550   E.wex 1551
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pr 4405  ax-reg 7562
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-v 2960  df-dif 3325  df-un 3327  df-nul 3631  df-sn 3822  df-pr 3823
  Copyright terms: Public domain W3C validator