MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axresscn Unicode version

Theorem axresscn 8765
Description: The real numbers are a subset of the complex numbers. Axiom 1 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-resscn 8789. (Contributed by NM, 1-Mar-1995.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (New usage is discouraged.)
Assertion
Ref Expression
axresscn  |-  RR  C_  CC

Proof of Theorem axresscn
StepHypRef Expression
1 0r 8697 . . 3  |-  0R  e.  R.
2 snssi 3760 . . 3  |-  ( 0R  e.  R.  ->  { 0R }  C_  R. )
3 xpss2 4795 . . 3  |-  ( { 0R }  C_  R.  ->  ( R.  X.  { 0R } )  C_  ( R.  X.  R. ) )
41, 2, 3mp2b 11 . 2  |-  ( R. 
X.  { 0R }
)  C_  ( R.  X.  R. )
5 df-r 8742 . 2  |-  RR  =  ( R.  X.  { 0R } )
6 df-c 8738 . 2  |-  CC  =  ( R.  X.  R. )
74, 5, 63sstr4i 3218 1  |-  RR  C_  CC
Colors of variables: wff set class
Syntax hints:    e. wcel 1685    C_ wss 3153   {csn 3641    X. cxp 4686   R.cnr 8484   0Rc0r 8485   CCcc 8730   RRcr 8731
This theorem is referenced by:  ax1cn  8766
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-recs 6383  df-rdg 6418  df-1o 6474  df-oadd 6478  df-omul 6479  df-er 6655  df-ec 6657  df-qs 6661  df-ni 8491  df-pli 8492  df-mi 8493  df-lti 8494  df-plpq 8527  df-mpq 8528  df-ltpq 8529  df-enq 8530  df-nq 8531  df-erq 8532  df-plq 8533  df-mq 8534  df-1nq 8535  df-rq 8536  df-ltnq 8537  df-np 8600  df-1p 8601  df-enr 8676  df-nr 8677  df-0r 8681  df-c 8738  df-r 8742
  Copyright terms: Public domain W3C validator