MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axrrecex Unicode version

Theorem axrrecex 8662
Description: Existence of reciprocal of nonzero real number. Axiom 16 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rrecex 8686. (Contributed by NM, 15-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axrrecex  |-  ( ( A  e.  RR  /\  A  =/=  0 )  ->  E. x  e.  RR  ( A  x.  x
)  =  1 )
Distinct variable group:    x, A

Proof of Theorem axrrecex
StepHypRef Expression
1 elreal 8630 . . . 4  |-  ( A  e.  RR  <->  E. y  e.  R.  <. y ,  0R >.  =  A )
2 df-rex 2512 . . . 4  |-  ( E. y  e.  R.  <. y ,  0R >.  =  A  <->  E. y ( y  e. 
R.  /\  <. y ,  0R >.  =  A
) )
31, 2bitri 242 . . 3  |-  ( A  e.  RR  <->  E. y
( y  e.  R.  /\ 
<. y ,  0R >.  =  A ) )
4 neeq1 2420 . . . 4  |-  ( <.
y ,  0R >.  =  A  ->  ( <. y ,  0R >.  =/=  0  <->  A  =/=  0 ) )
5 oveq1 5714 . . . . . 6  |-  ( <.
y ,  0R >.  =  A  ->  ( <. y ,  0R >.  x.  x
)  =  ( A  x.  x ) )
65eqeq1d 2261 . . . . 5  |-  ( <.
y ,  0R >.  =  A  ->  ( ( <. y ,  0R >.  x.  x )  =  1  <-> 
( A  x.  x
)  =  1 ) )
76rexbidv 2526 . . . 4  |-  ( <.
y ,  0R >.  =  A  ->  ( E. x  e.  RR  ( <. y ,  0R >.  x.  x )  =  1  <->  E. x  e.  RR  ( A  x.  x
)  =  1 ) )
84, 7imbi12d 313 . . 3  |-  ( <.
y ,  0R >.  =  A  ->  ( ( <. y ,  0R >.  =/=  0  ->  E. x  e.  RR  ( <. y ,  0R >.  x.  x
)  =  1 )  <-> 
( A  =/=  0  ->  E. x  e.  RR  ( A  x.  x
)  =  1 ) ) )
9 df-0 8621 . . . . . . 7  |-  0  =  <. 0R ,  0R >.
109eqeq2i 2263 . . . . . 6  |-  ( <.
y ,  0R >.  =  0  <->  <. y ,  0R >.  =  <. 0R ,  0R >. )
11 vex 2728 . . . . . . 7  |-  y  e. 
_V
1211eqresr 8636 . . . . . 6  |-  ( <.
y ,  0R >.  = 
<. 0R ,  0R >.  <->  y  =  0R )
1310, 12bitri 242 . . . . 5  |-  ( <.
y ,  0R >.  =  0  <->  y  =  0R )
1413necon3bii 2444 . . . 4  |-  ( <.
y ,  0R >.  =/=  0  <->  y  =/=  0R )
15 recexsr 8606 . . . . . 6  |-  ( ( y  e.  R.  /\  y  =/=  0R )  ->  E. z  e.  R.  ( y  .R  z
)  =  1R )
1615ex 425 . . . . 5  |-  ( y  e.  R.  ->  (
y  =/=  0R  ->  E. z  e.  R.  (
y  .R  z )  =  1R ) )
17 opelreal 8629 . . . . . . . . . 10  |-  ( <.
z ,  0R >.  e.  RR  <->  z  e.  R. )
1817anbi1i 679 . . . . . . . . 9  |-  ( (
<. z ,  0R >.  e.  RR  /\  ( <.
y ,  0R >.  x. 
<. z ,  0R >. )  =  1 )  <->  ( z  e.  R.  /\  ( <.
y ,  0R >.  x. 
<. z ,  0R >. )  =  1 ) )
19 mulresr 8638 . . . . . . . . . . . 12  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  <. (
y  .R  z ) ,  0R >. )
2019eqeq1d 2261 . . . . . . . . . . 11  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1  <->  <. ( y  .R  z
) ,  0R >.  =  1 ) )
21 df-1 8622 . . . . . . . . . . . . 13  |-  1  =  <. 1R ,  0R >.
2221eqeq2i 2263 . . . . . . . . . . . 12  |-  ( <.
( y  .R  z
) ,  0R >.  =  1  <->  <. ( y  .R  z ) ,  0R >.  =  <. 1R ,  0R >. )
23 ovex 5732 . . . . . . . . . . . . 13  |-  ( y  .R  z )  e. 
_V
2423eqresr 8636 . . . . . . . . . . . 12  |-  ( <.
( y  .R  z
) ,  0R >.  = 
<. 1R ,  0R >.  <->  (
y  .R  z )  =  1R )
2522, 24bitri 242 . . . . . . . . . . 11  |-  ( <.
( y  .R  z
) ,  0R >.  =  1  <->  ( y  .R  z )  =  1R )
2620, 25syl6bb 254 . . . . . . . . . 10  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1  <-> 
( y  .R  z
)  =  1R )
)
2726pm5.32da 625 . . . . . . . . 9  |-  ( y  e.  R.  ->  (
( z  e.  R.  /\  ( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 )  <-> 
( z  e.  R.  /\  ( y  .R  z
)  =  1R )
) )
2818, 27syl5bb 250 . . . . . . . 8  |-  ( y  e.  R.  ->  (
( <. z ,  0R >.  e.  RR  /\  ( <. y ,  0R >.  x. 
<. z ,  0R >. )  =  1 )  <->  ( z  e.  R.  /\  ( y  .R  z )  =  1R ) ) )
29 oveq2 5715 . . . . . . . . . 10  |-  ( x  =  <. z ,  0R >.  ->  ( <. y ,  0R >.  x.  x
)  =  ( <.
y ,  0R >.  x. 
<. z ,  0R >. ) )
3029eqeq1d 2261 . . . . . . . . 9  |-  ( x  =  <. z ,  0R >.  ->  ( ( <.
y ,  0R >.  x.  x )  =  1  <-> 
( <. y ,  0R >.  x.  <. z ,  0R >. )  =  1 ) )
3130rcla4ev 2819 . . . . . . . 8  |-  ( (
<. z ,  0R >.  e.  RR  /\  ( <.
y ,  0R >.  x. 
<. z ,  0R >. )  =  1 )  ->  E. x  e.  RR  ( <. y ,  0R >.  x.  x )  =  1 )
3228, 31syl6bir 222 . . . . . . 7  |-  ( y  e.  R.  ->  (
( z  e.  R.  /\  ( y  .R  z
)  =  1R )  ->  E. x  e.  RR  ( <. y ,  0R >.  x.  x )  =  1 ) )
3332exp3a 427 . . . . . 6  |-  ( y  e.  R.  ->  (
z  e.  R.  ->  ( ( y  .R  z
)  =  1R  ->  E. x  e.  RR  ( <. y ,  0R >.  x.  x )  =  1 ) ) )
3433rexlimdv 2626 . . . . 5  |-  ( y  e.  R.  ->  ( E. z  e.  R.  ( y  .R  z
)  =  1R  ->  E. x  e.  RR  ( <. y ,  0R >.  x.  x )  =  1 ) )
3516, 34syld 42 . . . 4  |-  ( y  e.  R.  ->  (
y  =/=  0R  ->  E. x  e.  RR  ( <. y ,  0R >.  x.  x )  =  1 ) )
3614, 35syl5bi 210 . . 3  |-  ( y  e.  R.  ->  ( <. y ,  0R >.  =/=  0  ->  E. x  e.  RR  ( <. y ,  0R >.  x.  x
)  =  1 ) )
373, 8, 36gencl 2752 . 2  |-  ( A  e.  RR  ->  ( A  =/=  0  ->  E. x  e.  RR  ( A  x.  x )  =  1 ) )
3837imp 420 1  |-  ( ( A  e.  RR  /\  A  =/=  0 )  ->  E. x  e.  RR  ( A  x.  x
)  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360   E.wex 1537    = wceq 1619    e. wcel 1621    =/= wne 2412   E.wrex 2508   <.cop 3544  (class class class)co 5707   R.cnr 8366   0Rc0r 8367   1Rc1r 8368    .R cmr 8371   RRcr 8613   0cc0 8614   1c1 8615    x. cmul 8619
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4035  ax-nul 4043  ax-pow 4079  ax-pr 4105  ax-un 4400  ax-inf2 7223
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2511  df-rex 2512  df-reu 2513  df-rab 2514  df-v 2727  df-sbc 2920  df-csb 3007  df-dif 3078  df-un 3080  df-in 3082  df-ss 3086  df-pss 3088  df-nul 3360  df-if 3468  df-pw 3529  df-sn 3547  df-pr 3548  df-tp 3549  df-op 3550  df-uni 3725  df-int 3758  df-iun 3802  df-br 3918  df-opab 3972  df-mpt 3973  df-tr 4008  df-eprel 4195  df-id 4199  df-po 4204  df-so 4205  df-fr 4242  df-we 4244  df-ord 4285  df-on 4286  df-lim 4287  df-suc 4288  df-om 4545  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-fun 4599  df-fn 4600  df-f 4601  df-f1 4602  df-fo 4603  df-f1o 4604  df-fv 4605  df-ov 5710  df-oprab 5711  df-mpt2 5712  df-1st 5971  df-2nd 5972  df-recs 6271  df-rdg 6306  df-1o 6362  df-oadd 6366  df-omul 6367  df-er 6543  df-ec 6545  df-qs 6549  df-ni 8373  df-pli 8374  df-mi 8375  df-lti 8376  df-plpq 8409  df-mpq 8410  df-ltpq 8411  df-enq 8412  df-nq 8413  df-erq 8414  df-plq 8415  df-mq 8416  df-1nq 8417  df-rq 8418  df-ltnq 8419  df-np 8482  df-1p 8483  df-plp 8484  df-mp 8485  df-ltp 8486  df-plpr 8556  df-mpr 8557  df-enr 8558  df-nr 8559  df-plr 8560  df-mr 8561  df-ltr 8562  df-0r 8563  df-1r 8564  df-m1r 8565  df-c 8620  df-0 8621  df-1 8622  df-r 8624  df-mul 8626
  Copyright terms: Public domain W3C validator