Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axsegcon Unicode version

Theorem axsegcon 25580
Description: Any segment  A B can be extended to a point  x such that  B x is congruent to  C D. Axiom A4 of [Schwabhauser] p. 11. (Contributed by Scott Fenton, 4-Jun-2013.)
Assertion
Ref Expression
axsegcon  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  E. x  e.  ( EE `  N ) ( B  Btwn  <. A ,  x >.  /\  <. B ,  x >.Cgr <. C ,  D >. ) )
Distinct variable groups:    x, N    x, A    x, B    x, C    x, D

Proof of Theorem axsegcon
Dummy variables  k  p  t  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axsegconlem1 25570 . . . . 5  |-  ( ( A  =  B  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )
21ex 424 . . . 4  |-  ( A  =  B  ->  (
( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  ->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( x `  i
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) ) )
3 simprll 739 . . . . . 6  |-  ( ( A  =/=  B  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  A  e.  ( EE `  N ) )
4 simprlr 740 . . . . . 6  |-  ( ( A  =/=  B  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  B  e.  ( EE `  N ) )
5 simpl 444 . . . . . 6  |-  ( ( A  =/=  B  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  A  =/=  B
)
6 simprr 734 . . . . . 6  |-  ( ( A  =/=  B  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )
7 eqid 2387 . . . . . . . 8  |-  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 )  =  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 )
8 eqid 2387 . . . . . . . 8  |-  sum_ p  e.  ( 1 ... N
) ( ( ( C `  p )  -  ( D `  p ) ) ^
2 )  =  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 )
9 eqid 2387 . . . . . . . 8  |-  ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) )  x.  ( B `  k )
)  -  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( C `  p )  -  ( D `  p ) ) ^
2 ) )  x.  ( A `  k
) ) )  / 
( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) ) ) )  =  ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )
107, 8, 9axsegconlem8 25577 . . . . . . 7  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  (
k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  e.  ( EE `  N
) )
117, 8axsegconlem7 25576 . . . . . . 7  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  (
( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) ) )  e.  ( 0 [,] 1
) )
127, 8, 9axsegconlem10 25579 . . . . . . 7  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) ) ) )  x.  ( A `  i ) )  +  ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  x.  (
( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ) )
137, 8, 9axsegconlem9 25578 . . . . . . 7  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  sum_ i  e.  ( 1 ... N
) ( ( ( B `  i )  -  ( ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) )  x.  ( B `  k )
)  -  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( C `  p )  -  ( D `  p ) ) ^
2 ) )  x.  ( A `  k
) ) )  / 
( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) ) ) ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) )
14 fveq1 5667 . . . . . . . . . . . . 13  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  -> 
( x `  i
)  =  ( ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) )
1514oveq2d 6036 . . . . . . . . . . . 12  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  -> 
( t  x.  (
x `  i )
)  =  ( t  x.  ( ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) )  x.  ( B `  k )
)  -  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( C `  p )  -  ( D `  p ) ) ^
2 ) )  x.  ( A `  k
) ) )  / 
( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) ) ) ) `  i
) ) )
1615oveq2d 6036 . . . . . . . . . . 11  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  -> 
( ( ( 1  -  t )  x.  ( A `  i
) )  +  ( t  x.  ( x `
 i ) ) )  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ) )
1716eqeq2d 2398 . . . . . . . . . 10  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  -> 
( ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  <-> 
( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ) ) )
1817ralbidv 2669 . . . . . . . . 9  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  -> 
( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  <->  A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  (
( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ) ) )
1914oveq2d 6036 . . . . . . . . . . . 12  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  -> 
( ( B `  i )  -  (
x `  i )
)  =  ( ( B `  i )  -  ( ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) )  x.  ( B `  k )
)  -  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( C `  p )  -  ( D `  p ) ) ^
2 ) )  x.  ( A `  k
) ) )  / 
( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) ) ) ) `  i
) ) )
2019oveq1d 6035 . . . . . . . . . . 11  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  -> 
( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  ( ( ( B `  i
)  -  ( ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ^
2 ) )
2120sumeq2sdv 12425 . . . . . . . . . 10  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  ->  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ^
2 ) )
2221eqeq1d 2395 . . . . . . . . 9  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  -> 
( sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 )  <->  sum_ i  e.  ( 1 ... N
) ( ( ( B `  i )  -  ( ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) )  x.  ( B `  k )
)  -  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( C `  p )  -  ( D `  p ) ) ^
2 ) )  x.  ( A `  k
) ) )  / 
( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) ) ) ) `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )
2318, 22anbi12d 692 . . . . . . . 8  |-  ( x  =  ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  -> 
( ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) )  <->  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  (
( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) ) )
24 oveq2 6028 . . . . . . . . . . . . 13  |-  ( t  =  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  ->  (
1  -  t )  =  ( 1  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) ) ) ) )
2524oveq1d 6035 . . . . . . . . . . . 12  |-  ( t  =  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  ->  (
( 1  -  t
)  x.  ( A `
 i ) )  =  ( ( 1  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) ) )  x.  ( A `  i
) ) )
26 oveq1 6027 . . . . . . . . . . . 12  |-  ( t  =  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  ->  (
t  x.  ( ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) )  =  ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  x.  (
( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) )
2725, 26oveq12d 6038 . . . . . . . . . . 11  |-  ( t  =  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  ->  (
( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) )  x.  ( B `  k )
)  -  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( C `  p )  -  ( D `  p ) ) ^
2 ) )  x.  ( A `  k
) ) )  / 
( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) ) ) ) `  i
) ) )  =  ( ( ( 1  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) ) )  x.  ( A `  i
) )  +  ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) ) )  x.  ( ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ) )
2827eqeq2d 2398 . . . . . . . . . 10  |-  ( t  =  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  ->  (
( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) )  <-> 
( B `  i
)  =  ( ( ( 1  -  (
( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) ) ) )  x.  ( A `  i ) )  +  ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  x.  (
( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ) ) )
2928ralbidv 2669 . . . . . . . . 9  |-  ( t  =  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  ->  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  (
( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) )  <->  A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  / 
( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) ) )  x.  ( A `  i
) )  +  ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) ) )  x.  ( ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ) ) )
3029anbi1d 686 . . . . . . . 8  |-  ( t  =  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  ->  (
( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( ( k  e.  ( 1 ... N )  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) )  x.  ( B `  k )
)  -  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( C `  p )  -  ( D `  p ) ) ^
2 ) )  x.  ( A `  k
) ) )  / 
( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) ) ) ) `  i
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) )  <->  ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) ) ) )  x.  ( A `  i ) )  +  ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  x.  (
( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) ) )
3123, 30rspc2ev 3003 . . . . . . 7  |-  ( ( ( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) )  e.  ( EE `  N
)  /\  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  e.  ( 0 [,] 1 )  /\  ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) ) ) ) )  x.  ( A `  i ) )  +  ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) )  /  ( ( sqr `  sum_ p  e.  ( 1 ... N
) ( ( ( A `  p )  -  ( B `  p ) ) ^
2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) ) )  x.  (
( k  e.  ( 1 ... N ) 
|->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( ( k  e.  ( 1 ... N
)  |->  ( ( ( ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `  p
)  -  ( B `
 p ) ) ^ 2 ) )  +  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `  p
)  -  ( D `
 p ) ) ^ 2 ) ) )  x.  ( B `
 k ) )  -  ( ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( C `
 p )  -  ( D `  p ) ) ^ 2 ) )  x.  ( A `
 k ) ) )  /  ( sqr `  sum_ p  e.  ( 1 ... N ) ( ( ( A `
 p )  -  ( B `  p ) ) ^ 2 ) ) ) ) `  i ) ) ^
2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `  i )  -  ( D `  i )
) ^ 2 ) ) )  ->  E. x  e.  ( EE `  N
) E. t  e.  ( 0 [,] 1
) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )
3210, 11, 12, 13, 31syl112anc 1188 . . . . . 6  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B
)  /\  ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  E. x  e.  ( EE `  N
) E. t  e.  ( 0 [,] 1
) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )
333, 4, 5, 6, 32syl31anc 1187 . . . . 5  |-  ( ( A  =/=  B  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  ->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )
3433ex 424 . . . 4  |-  ( A  =/=  B  ->  (
( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  ->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( x `  i
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) ) )
352, 34pm2.61ine 2626 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  ->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( x `  i
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
36 simpllr 736 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  B  e.  ( EE `  N ) )
37 simplll 735 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  A  e.  ( EE `  N ) )
38 simpr 448 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  x  e.  ( EE `  N ) )
39 brbtwn 25552 . . . . . . 7  |-  ( ( B  e.  ( EE
`  N )  /\  A  e.  ( EE `  N )  /\  x  e.  ( EE `  N
) )  ->  ( B  Btwn  <. A ,  x >.  <->  E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( x `  i
) ) ) ) )
4036, 37, 38, 39syl3anc 1184 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  -> 
( B  Btwn  <. A ,  x >. 
<->  E. t  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( x `  i
) ) ) ) )
41 simplrl 737 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  C  e.  ( EE `  N ) )
42 simplrr 738 . . . . . . 7  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  ->  D  e.  ( EE `  N ) )
43 brcgr 25553 . . . . . . 7  |-  ( ( ( B  e.  ( EE `  N )  /\  x  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( <. B ,  x >.Cgr
<. C ,  D >.  <->  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
4436, 38, 41, 42, 43syl22anc 1185 . . . . . 6  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  -> 
( <. B ,  x >.Cgr
<. C ,  D >.  <->  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) )
4540, 44anbi12d 692 . . . . 5  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  -> 
( ( B  Btwn  <. A ,  x >.  /\ 
<. B ,  x >.Cgr <. C ,  D >. )  <-> 
( E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) ) )
46 r19.41v 2804 . . . . 5  |-  ( E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( x `  i
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) )  <->  ( E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) )
4745, 46syl6bbr 255 . . . 4  |-  ( ( ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  x  e.  ( EE `  N ) )  -> 
( ( B  Btwn  <. A ,  x >.  /\ 
<. B ,  x >.Cgr <. C ,  D >. )  <->  E. t  e.  (
0 [,] 1 ) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( x `  i ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `
 i )  -  ( x `  i
) ) ^ 2 )  =  sum_ i  e.  ( 1 ... N
) ( ( ( C `  i )  -  ( D `  i ) ) ^
2 ) ) ) )
4847rexbidva 2666 . . 3  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( E. x  e.  ( EE `  N
) ( B  Btwn  <. A ,  x >.  /\ 
<. B ,  x >.Cgr <. C ,  D >. )  <->  E. x  e.  ( EE `  N ) E. t  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( x `  i
) ) )  /\  sum_ i  e.  ( 1 ... N ) ( ( ( B `  i )  -  (
x `  i )
) ^ 2 )  =  sum_ i  e.  ( 1 ... N ) ( ( ( C `
 i )  -  ( D `  i ) ) ^ 2 ) ) ) )
4935, 48mpbird 224 . 2  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  ->  E. x  e.  ( EE `  N ) ( B  Btwn  <. A ,  x >.  /\  <. B ,  x >.Cgr <. C ,  D >. ) )
50493adant1 975 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  E. x  e.  ( EE `  N ) ( B  Btwn  <. A ,  x >.  /\  <. B ,  x >.Cgr <. C ,  D >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2550   A.wral 2649   E.wrex 2650   <.cop 3760   class class class wbr 4153    e. cmpt 4207   ` cfv 5394  (class class class)co 6020   0cc0 8923   1c1 8924    + caddc 8926    x. cmul 8928    - cmin 9223    / cdiv 9609   NNcn 9932   2c2 9981   [,]cicc 10851   ...cfz 10975   ^cexp 11309   sqrcsqr 11965   sum_csu 12406   EEcee 25541    Btwn cbtwn 25542  Cgrccgr 25543
This theorem is referenced by:  cgrtriv  25650  segconeu  25659  btwntriv2  25660  btwnouttr2  25670  btwndiff  25675  ifscgr  25692  cgrxfr  25703  lineext  25724  btwnconn1lem13  25747  btwnconn1lem14  25748  segcon2  25753
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-er 6841  df-map 6956  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-sup 7381  df-oi 7412  df-card 7759  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-n0 10154  df-z 10215  df-uz 10421  df-rp 10545  df-ico 10854  df-icc 10855  df-fz 10976  df-fzo 11066  df-seq 11251  df-exp 11310  df-hash 11546  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-clim 12209  df-sum 12407  df-ee 25544  df-btwn 25545  df-cgr 25546
  Copyright terms: Public domain W3C validator