HomeHome Metamath Proof Explorer < Previous   Next >
Related theorems
Unicode version

Theorem axsep 3591
Description: Separation Scheme, which is an axiom scheme of Zermelo's original theory. Scheme Sep of [BellMachover] p. 463. As we show here, it is redundant if we assume Replacement in the form of ax-rep 3582. Some textbooks present Separation as a separate axiom scheme in order to show that much of set theory can be derived without the stronger Replacement. The Separation Scheme is a weak form of Frege's Axiom of Comprehension, conditioning it (with x e. z) so that it asserts the existence of a collection only if it is smaller than some other collection z that already exists. This prevents Russell's paradox ru 2653. In some texts, this scheme is called "Aussonderung" or the Subset Axiom.

The variable x can appear free in the wff ph, which in textbooks is often written ph(x). To specify this in the Metamath language, we omit the distinct variable requirement ($d) that x not appear in ph.

For a version using a class variable, see zfauscl 3594, which requires the Axiom of Extensionality as well as Replacement for its derivation.

If we omit the requirement that y not occur in ph, we can derive a contradiction, as notzfaus 3635 shows (contradicting zfauscl 3594). However, as axsep2 3593 shows, we can eliminate the restriction that z not occur in ph.

Note: the distinct variable restriction that z not occur in ph is actually redundant in this particular proof, but we keep it since its purpose is to demonstrate the derivation of the exact ax-sep 3592 from ax-rep 3582.

This theorem should not be referenced by any proof. Instead, use ax-sep 3592 below so that the uses of the Axiom of Separation can be more easily identified.

Assertion
Ref Expression
axsep |- E.yA.x(x e. y <-> (x e. z /\ ph))
Distinct variable groups:   x,y,z   ph,y,z
Allowed substitution hint:   ph(x)

Proof of Theorem axsep
StepHypRef Expression
1 ax-17 1589 . . . 4 |- ((w = x /\ ph) -> A.y(w = x /\ ph))
21axrep5 3587 . . 3 |- (A.w(w e. z -> E.yA.x((w = x /\ ph) -> x = y)) -> E.yA.x(x e. y <-> E.w(w e. z /\ (w = x /\ ph))))
3 a9e 1701 . . . . 5 |- E.y y = w
4 equtr 1709 . . . . . . . . 9 |- (y = w -> (w = x -> y = x))
5 equcomi 1706 . . . . . . . . 9 |- (y = x -> x = y)
64, 5syl6 29 . . . . . . . 8 |- (y = w -> (w = x -> x = y))
76adantrd 508 . . . . . . 7 |- (y = w -> ((w = x /\ ph) -> x = y))
87alrimiv 1865 . . . . . 6 |- (y = w -> A.x((w = x /\ ph) -> x = y))
98eximi 1528 . . . . 5 |- (E.y y = w -> E.yA.x((w = x /\ ph) -> x = y))
103, 9ax-mp 7 . . . 4 |- E.yA.x((w = x /\ ph) -> x = y)
1110a1i 9 . . 3 |- (w e. z -> E.yA.x((w = x /\ ph) -> x = y))
122, 11mpg 1504 . 2 |- E.yA.x(x e. y <-> E.w(w e. z /\ (w = x /\ ph)))
13 an12 840 . . . . . . 7 |- ((w = x /\ (w e. z /\ ph)) <-> (w e. z /\ (w = x /\ ph)))
1413exbii 1534 . . . . . 6 |- (E.w(w = x /\ (w e. z /\ ph)) <-> E.w(w e. z /\ (w = x /\ ph)))
15 ax-17 1589 . . . . . . 7 |- ((x e. z /\ ph) -> A.w(x e. z /\ ph))
16 elequ1 1714 . . . . . . . 8 |- (w = x -> (w e. z <-> x e. z))
1716anbi1d 780 . . . . . . 7 |- (w = x -> ((w e. z /\ ph) <-> (x e. z /\ ph)))
1815, 17equsex 1726 . . . . . 6 |- (E.w(w = x /\ (w e. z /\ ph)) <-> (x e. z /\ ph))
1914, 18bitr3i 282 . . . . 5 |- (E.w(w e. z /\ (w = x /\ ph)) <-> (x e. z /\ ph))
2019bibi2i 350 . . . 4 |- ((x e. y <-> E.w(w e. z /\ (w = x /\ ph))) <-> (x e. y <-> (x e. z /\ ph)))
2120albii 1516 . . 3 |- (A.x(x e. y <-> E.w(w e. z /\ (w = x /\ ph))) <-> A.x(x e. y <-> (x e. z /\ ph)))
2221exbii 1534 . 2 |- (E.yA.x(x e. y <-> E.w(w e. z /\ (w = x /\ ph))) <-> E.yA.x(x e. y <-> (x e. z /\ ph)))
2312, 22mpbi 231 1 |- E.yA.x(x e. y <-> (x e. z /\ ph))
Colors of variables: wff set class
Syntax hints:   -> wi 3   <-> wb 203   /\ wa 412  A.wal 1496  E.wex 1501   = wceq 1573   e. wcel 1575
This theorem was proved from axioms:  ax-1 4  ax-2 5  ax-3 6  ax-mp 7  ax-5 1497  ax-6 1498  ax-7 1499  ax-gen 1500  ax-8 1577  ax-13 1581  ax-14 1582  ax-17 1589  ax-9 1603  ax-4 1609  ax-rep 3582
This theorem depends on definitions:  df-bi 204  df-an 414  df-ex 1502
Copyright terms: Public domain